航空学报 > 2023, Vol. 44 Issue (23): 428529-428529   doi: 10.7527/S1000-6893.2023.28529

循环老化锂离子电池热失控气体原位爆炸极限实验分析

杨娟1,2(), 牛江昊3, 张青松3   

  1. 1.中国民航大学 工程技术训练中心,天津 300300
    2.中国民航大学 天津市城市空中交通系统技术与装备重点实验室,天津 300300
    3.中国民航大学 民航热灾害防控与应急重点实验室,天津 300300
  • 收稿日期:2023-02-06 修回日期:2023-03-03 接受日期:2023-03-28 出版日期:2023-12-15 发布日期:2023-03-31
  • 通讯作者: 杨娟 E-mail:haishi_yj11@126.com
  • 基金资助:
    国家自然科学基金民航联合基金重点支持项目(U2033204);天津市城市空中交通系统技术与装备重点实验室开放基金(TJKL-UAM-202302);中央高校基本科研业务费(3122022PY11)

Insitu explosion limit of thermal runaway gas explosion in cyclic aging lithium⁃ion batteries: Experimental analysis

Juan YANG1,2(), Jianghao NIU3, Qingsong ZHANG3   

  1. 1.Engineering Techniques Training Center,Civil Aviation University of China,Tianjin 300300,China
    2.Key Laboratory of Technology and Equipment of Tianjin Urban Air Transportation System,Civil Aviation University of China,Tianjin 300300,China
    3.Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response,Civil Aviation University of China,Tianjin 300300,China
  • Received:2023-02-06 Revised:2023-03-03 Accepted:2023-03-28 Online:2023-12-15 Published:2023-03-31
  • Contact: Juan YANG E-mail:haishi_yj11@126.com
  • Supported by:
    Key Support Project of Civil Aviation Joint Fund of National Natural Science Foundation of China(U2033204);Open Fund of Key Laboratory of Technology and Equipment of Tianjin Urban Air Transportation System(TJKL-UAM-202302);Fundamental Research Funds for the Central Universities(3122022PY11)

摘要:

为确保全寿命周期内锂离子电池的安全状态处于可控范围,掌握老化锂电池的热危险性变得尤为重要。开发了一种基于计算机断层扫描(CT)的无损检测与原位检测热失控气体爆炸危险性相结合的方法,对不同循环老化程度的锂离子电池热失控气体爆炸极限及爆炸危险性进行实验分析。实验结果表明,与未经老化的锂电池相比,老化电池在热滥用条件下达到热失控所需热量减少;内部层状结构形变随着循环老化程度的加深而加剧,爆炸范围呈现收敛的趋势,并在锂电池经历120圈循环老化时达到最值。未老化锂电池的热失控气体的最高燃爆温度为203.4 ℃、最高燃爆压力为0.458 5 MPa,老化电池的热失控气体的燃爆危险性显著降低,随着老化程度的提高,虽然热失控气体的爆炸危险性有轻微回升,但仍远低于未老化电池。研究结果证明了CT无损检测与原位检测热失控气体爆炸危险性相结合的可行性,为进一步构建锂电池危险程度演化机制数据库及探测预警提供理论依据。

关键词: 锂离子电池, 热失控, 无损检测, 气体爆炸极限, 循环老化

Abstract:

To ensure the safety status of aging batteries under control, it is important to understand the thermal hazard of aging batteries. In this work, a non-destructive method based on Computed Tomography (CT) combined with in-situ detection of thermal runaway gas hazard was developed to analyze the thermal runaway gas explosion limit and explosion hazard of 18650 Li-ion batteries with different aging levels. The experimental results show that, compared with the unaged battery, the amount of heat required for aging batteries to achieve thermal runaway under thermal abuse is reduced. As the aging level increases, the internal laminar deformation of the aged battery increases and the explosion range tends to converge, reaching a maximum value when the battery undergoes 120 cycles of aging. The thermal runaway gas of the unaged battery exhibited the highest detonation temperature of 203.4 °C and the highest detonation pressure of 0.458 5 MPa, while the detonation risk of the thermal runaway gas of the aged battery was significantly lower. Although the detonation risk of the thermal runaway gas rebounded slightly with increasing ageing, it was still much lower than that of the unaged battery. The results demonstrate the feasibility of combining CT non-destructive testing with in-situ detection of thermal runaway gas hazard, and provide a theoretical basis for the database construction of the evolution mechanism of the lithium battery hazard level, as well as its detection and early warning.

Key words: lithium-ion battery, thermal runaway, nondestructive testing, gas explosion limit, cyclic aging

中图分类号: