1 |
CAO W P, MECROW B C, ATKINSON G J, et al. Overview of electric motor technologies used for more electric aircraft (MEA)[J]. IEEE Transactions on Industrial Electronics, 2012, 59(9): 3523-3531.
|
2 |
林卫斌, 吴嘉仪. 碳中和愿景下中国能源转型的三大趋势[J]. 价格理论与实践, 2021(7): 21-23, 114.
|
|
LIN W B, WU J Y. Three trends for China’s energy transition under the carbon neutrality vision[J]. Price (Theory & Practice), 2021(7): 21-23, 114 (in Chinese).
|
3 |
YANG J A, BAO X W, YANG Z G. Load identification for the more electric aircraft distribution system based on intelligent algorithm[J]. Aerospace, 2022, 9(7): 350.
|
4 |
ROBOAM X, SARENI B, DE ANDRADE A. More electricity in the air: toward optimized electrical networks embedded in more-electrical aircraft[J]. IEEE Industrial Electronics Magazine, 2012, 6(4): 6-17.
|
5 |
黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1): 57-68.
|
|
HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 57-68 (in Chinese).
|
6 |
SAEVARSDOTTIR G, TAO P C, STEFANSSON H, et al. Potential use of geothermal energy sources for the production of lithium-ion batteries[J]. Renewable Energy, 2014, 61: 17-22.
|
7 |
CARDONE M, GARGIULO B, FORNARO E. Modelling and experimental validation of a hybrid electric propulsion system for light aircraft and unmanned aerial vehicles[J]. Energies, 2021, 14(13): 3969.
|
8 |
JOHNSON W, SILVA C. NASA concept vehicles and the engineering of advanced air mobility aircraft[J]. The Aeronautical Journal, 2022, 126(1295): 59-91.
|
9 |
韩玉琪, 朱大明, 付玉, 等. 2022电动垂直起降飞行器主要进展[J]. 航空动力, 2023(1): 19-22.
|
|
HAN Y Q, ZHU D M, FU Y, et al. Main progress of electric vertical takeoff and landing vehicle in 2022[J]. Aerospace Power, 2023(1): 19-22 (in Chinese).
|
10 |
杨凤田, 范振伟, 项松, 等. 中国电动飞机技术创新与实践[J]. 航空学报, 2021, 42(3): 624619.
|
|
YANG F T, FAN Z W, XIANG S, et al. Technical innovation and practice of electric aircraft in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 624619 (in Chinese).
|
11 |
纪宇晗, 孙侠生, 俞笑, 等. 双碳战略下的新能源航空发展展望[J]. 航空科学技术, 2022, 33(12): 1-11.
|
|
JI Y H, SUN X S, YU X, et al. Development prospect of new energy aviation under the double carbon strategy[J]. Aeronautical Science & Technology, 2022, 33(12): 1-11 (in Chinese).
|
12 |
ALEXANDER R, MEYER D, WANG J K. A comparison of electric vehicle power systems to predict architectures, voltage levels, power requirements, and load characteristics of the future all-electric aircraft[C]∥2018 IEEE Transportation Electrification Conference and Expo (ITEC). Piscataway: IEEE Press, 2018: 194-200.
|
13 |
LV F, WANG Z Y, SHI L Y, et al. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries[J]. Journal of Power Sources, 2019, 441: 227175.
|
14 |
TARIQ M, MASWOOD A I, GAJANAYAKE C J, et al. Aircraft batteries: current trend towards more electric aircraft[J]. IET Electrical Systems in Transportation, 2017, 7(2): 93-103.
|
15 |
GANDOMAN F H, JAGUEMONT J, GOUTAM S, et al. Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges[J]. Applied Energy, 2019, 251: 113343.
|
16 |
CHOMBO P V, LAOONUAL Y. A review of safety strategies of a Li-ion battery[J]. Journal of Power Sources, 2020, 478: 228649.
|
17 |
SC-225 RTCA Inc. Minimum operational performance standards for rechargeable lithium batteries and battery systems: RTCA DO-311A [S]. Washinton, D. C.: Radio Technical Commission for Aeronautics, 2017.
|
18 |
ANON. Aircraft incident report: Auxiliary power unit battery fire, Japan airlines Boeing 787-8, JA829J, Boston, Massachusetts, January 7, 2013[R]. Washington, D. C.: National Transportation Safety Board, 2014.
|
19 |
WILLIARD N, HE W, HENDRICKS C, et al. Lessons learned from the 787 dreamliner issue on lithium-ion battery reliability[J]. Energies, 2013, 6(9): 4682-4695.
|
20 |
Eviation电动飞机测试中起火. 电动航空报道[EB/OL]. (2020-01-22) [2020-01-30]. .
|
|
Fire in Eviation electric aircraft test. E-Flight-Expo [EB/OL]. (2020-01-22)[2020-01-30]. (in Chinese).
|
21 |
FAA. Lithium batteries & lithium battery-powered devices[R]. Washington, D. C.: Federal Aviation Administration, 2019.
|
22 |
FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.
|
23 |
ZHANG L W, ZHAO P, XU M, et al. Computational identification of the safety regime of Li-ion battery thermal runaway[J]. Applied Energy, 2020, 261: 114440.
|
24 |
XU B, LEE J, KWON D, et al. Mitigation strategies for Li-ion battery thermal runaway: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111437.
|
25 |
WERFELMAN L. Testing the limits: The NTSB calls for new tests to prove lithium-ion battery installations in aircraft can mitigate hazards tied to thermal runaway[J]. Aerosafety World, 2014, 9: 41-43.
|
26 |
LIU L, LIN C J, FAN B, et al. A new method to determine the heating power of ternary cylindrical lithium ion batteries with highly repeatable thermal runaway test characteristics[J]. Journal of Power Sources, 2020, 472: 228503.
|
27 |
张青松, 曲奕润, 郝朝龙, 等. 三元锂离子电池热失控气体原位分析[J]. 高电压技术, 2022, 48(7): 2817-2825.
|
|
ZHANG Q S, QU Y R, HAO C L, et al. In⁃situ analysis of thermal runaway gas in ternary lithium-ion battery[J]. High Voltage Engineering, 2022, 48(7): 2817-2825 (in Chinese).
|
28 |
WANG J G, MEI W X, CUI Z X, et al. Experimental and numerical study on penetration-induced internal short-circuit of lithium-ion cell[J]. Applied Thermal Engineering, 2020, 171: 115082.
|
29 |
SHAN T X, WANG Z P, ZHU X Q, et al. Explosion behavior investigation and safety assessment of large-format lithium-ion pouch cells[J]. Journal of Energy Chemistry, 2022, 72: 241-257.
|
30 |
JIANG F W, LIU K, WANG Z R, et al. Theoretical analysis of lithium-ion battery failure characteristics under different states of charge[J]. Fire and Materials, 2018, 42(6): 680-686.
|
31 |
FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64.
|
32 |
CHEN M Y, OUYANG D X, LIU J H, et al. Investigation on thermal and fire propagation behaviors of multiple lithium-ion batteries within the package[J]. Applied Thermal Engineering, 2019, 157: 113750.
|
33 |
ZHANG Q S, NIU J H, ZHAO Z H, et al. Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states[J]. Journal of Energy Storage, 2022, 45: 103759.
|
34 |
CHEN S C, WANG Z R, WANG J H, et al. Lower explosion limit of the vented gases from Li-ion batteries thermal runaway in high temperature condition[J]. Journal of Loss Prevention in the Process Industries, 2020, 63: 103992.
|
35 |
LI W F, WANG H W, ZHANG Y J, et al. Flammability characteristics of the battery vent gas: A case of NCA and LFP lithium-ion batteries during external heating abuse[J]. Journal of Energy Storage, 2019, 24: 100775.
|
36 |
张青松, 赵启臣. 过充循环对锂离子电池老化及安全性影响[J]. 高电压技术, 2020, 46(10): 3390-3397.
|
|
ZHANG Q S, ZHAO Q C. Effects of overcharge cycling on the aging and safety of lithium ion batteries[J]. High Voltage Engineering, 2020, 46(10): 3390-3397 (in Chinese).
|
37 |
LIU J L, DUAN Q L, PENG W, et al. Slight overcharging cycling failure of commercial lithium-ion battery induced by the jelly roll destruction[J]. Process Safety and Environmental Protection, 2022, 160: 695-703.
|
38 |
WU Y, SAXENA S, XING Y J, et al. Analysis of manufacturing-induced defects and structural deformations in lithium-ion batteries using computed tomography[J]. Energies, 2018, 11(4): 925.
|
39 |
WALDMANN T, GORSE S, SAMTLEBEN T, et al. A mechanical aging mechanism in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(10): A1742-A1747.
|
40 |
REN D S, HSU H, LI R H, et al. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries[J]. eTransportation, 2019, 2: 100034.
|