1 |
BEWLAY B P, WEIMER M, KELLY T, et al. The science, technology, and implementation of TiAl alloys in commercial aircraft engines[J]. MRS Online Proceedings Library (OPL), 2013, 1516(5): 49-58.
|
2 |
KOTHARI K, RADHAKRISHNAN R, WERELEY N M. Advances in gamma titanium aluminides and their manufacturing techniques[J]. Progress in Aerospace Sciences, 2012, 55(1): 1-16.
|
3 |
HOOD R, ASPINWALL D K, VOICE W. Creep feed grinding of γ-TiAl using single layer electroplated diamond superabrasive wheels[J]. CIRP Journal of Manufacturing Science and Technology, 2015, 11(3): 36-44.
|
4 |
XIA Z W, SHAN C W, ZHANG M H, et al. Machinability of γ-TiAl: a review[J]. Chinese Journal of Aeronautics, 2023, 36(7): 40-75.
|
5 |
BERANOAGIRRE A, LÓPEZ DE LACALLE L N. Optimizing the turning of titanium aluminum alloys [J]. Advanced Materials Research, 2012, 498: 189-194
|
6 |
CHENG Y, YUAN Q, ZHANG B, et al. Student on turning force of γ-TiAl alloy [J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(1): 2393-2402
|
7 |
PRIARONE P C, RIZZUTI S, SETTINERI L, et al. Effects of cutting angle, edge preparation, and nano structured coating on mill performance of a gamma titanium aluminum [J]. Journal of Materials Processing Technology, 2012, 212(12): 2619-2628
|
8 |
周丽, 崔超, 贾清, 等. γ-TiAl金属间化合物铣削加工实验与有限元模拟[J]. 金属学报, 2017, 53(4): 505-512.
|
|
ZHOU L, CUI C, JIA Q, et al. Experimental and finite element simulation of milling process for γ-TiAl intermetallics[J]. Acta Metallurgica Sinica, 2017, 53(4): 505-512 (in Chinese).
|
9 |
MANTLE A L, ASPINWALL D K. Surface integrity of a high speed milled gamma titanium aluminide[J]. Journal of Materials Processing Technology, 2001, 118(1): 143-150.
|
10 |
PRIARONE P C, RIZZUTI S, ROTELLA G, et al. Tool wear and surface quality in milling of a gamma-TiAl intermetallic[J]. International Journal of Advanced Manufacturing Technology, 2012, 61(1-4): 25-33.
|
11 |
SIMAO J, ASPINWALL D K, DEWES R C, et al. High-speed milling and surface grinding of an orthorhombic TiAl alloy Ti-23Al-25Nb[J]. PubliCAT, 2004, 5(3): 25-28.
|
12 |
乔帆, 任斐, 刘晓, 等. 难加工材料超低温切削的切屑形貌研究[J]. 机械制造, 2018, 56(6): 63-66.
|
|
QIAO F, REN F, LIU X, et al. Research on chip morphology in ultra-low temperature cutting of difficult to machine materials [J]. Mechanical Manufacturing, 2018, 56 (6): 63-66 (in Chinese).
|
13 |
杨政 .近片层组织TiAl脆韧转变行为研究[D]. 合肥: 合肥工业大学, 2014
|
|
YANG Z. Study on the brittle ductile transition behavior of TiAl near lamellar structure [D]. Hefei: Hefei University of Technology, 2014 (in Chinese).
|
14 |
UHLMANN E, HERTER S. Studies on conventional cutting of intermetallic nickel and titanium aluminides[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2006, 220(9): 1391-1398.
|
15 |
HOOD R, ASPINWALL D K, SAGE C, et al. High speed ball nose end milling of γ-TiAl alloys[J]. Intermetallics, 2013, 32: 284-291.
|
16 |
ASPINWALL D K, MANTLE A L, CHAN W K, et al. Cutting temperatures when ball nose end milling γ-TiAl intermetallic alloys[J]. CIRP Annals, 2013, 62(1): 75-78.
|
17 |
KLOCKE F, LUNG D, ARFT M. On high-speed turning of a third-generation gamma titanium aluminide[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65(1): 155-163.
|
18 |
仇文豪, 林琪超, 王相宇,等. 薄膜热电偶测温刀具研究现状[J]. 工具技术, 2022, 56(8): 3-10.
|
|
QIU W H, LIN Q C, WANG X Y, et al. Research status of thin film thermocouple temperature measuring tools [J]. Tool Technology, 2022, 56(8): 3-10 (in Chinese).
|
19 |
刘其涛. Ti48Al2Cr2Nb合金铸件应力和变形的数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
|
|
LIU Q T. Research on numerical simulation of stress and deformation of Ti48Al2Cr2Nb alloy castings[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese).
|
20 |
BOLDYREV I S, SHCHUROV I A, NIKONOV A V. Numerical simulation of the aluminum 6061-T6 cutting and the effect of the constitutive material model and failure criteria on cutting forces’ prediction[J]. Procedia Engineering, 2016, 150: 866-870.
|
21 |
岳彩旭. 金属切削过程有限元仿真技术[M]. 北京: 科学出版社, 2017.
|
|
YUE C X. Finite element simulation technology of metal cutting process[M]. Beijing: Science Press, 2017 (in Chinese).
|
22 |
XU X, ZHANG J, OUTEIRO J, et al. Multiscale simulation of grain refinement induced by dynamic recrystallization of Ti6Al4V alloy during high speed machining[J]. Journal of Materials Processing Technology, 2020, 286:116834.
|
23 |
刘文韬, 刘战强. 钛合金Ti-6Al-4V高压冷却车削过程有限元分析[J]. 现代制造工程, 2018(10): 44-50.
|
|
LIU W T, LIU Z Q. Finite element analysis of turning Ti-6Al-4V under high-pressure coolant[J]. Modern Manufacturing Engineering, 2018(10): 44-50 (in Chinese).
|
24 |
王兵. 高速切削材料变形及断裂行为对切屑形成的影响机理研究[D]. 济南: 山东大学, 2016.
|
|
WANG B. Research on the mechanism of the influence of deformation and fracture behavior of high speed cutting materials on chip formation [D]. Jinan: Shandong University, 2016 (in Chinese).
|
25 |
武文革, 成云平, 刘丽娟, 等. 金属切削原理及刀具[M]. 北京: 电子工业出版社, 2019.
|
|
WU W G, CHENG Y P, LIU L J, et al. principles of metal cutting and cutting tools [M]. Beijing: Electronic Industry Press, 2019 (in Chinese).
|
26 |
苏国胜. 高速切削锯齿形切屑形成过程与形成机理研究[D]. 济南: 山东大学, 2011.
|
|
SU G S. Research on the formation process and mechanism of serrated chips in high-speed cutting [D]. Jinan: Shandong University, 2011 (in Chinese).
|
27 |
张红艳. 不同冷却策略下钛合金Ti-5553切屑卷曲与切屑形态研究[D]. 哈尔滨: 哈尔滨理工大学, 2020.
|
|
ZHANG H Y. Research on chip curling and chip morphology of titanium alloy Ti-5553 under different cooling strategies [D]. Harbin: Harbin University of Science and Technology, 2020 (in Chinese).
|