| [1] |
孙侠生, 程文渊, 穆作栋, 等. 电动飞机发展白皮书[J]. 航空科学技术, 2019, 30(11): 1-7.
|
|
SUN X S, CHENG W Y, MU Z D, et al. White paper on the development of electric aircraft[J]. Aeronautical Science & Technology, 2019, 30(11): 1-7 (in Chinese).
|
| [2] |
杨凤田, 范振伟, 项松, 等. 中国电动飞机技术创新与实践[J]. 航空学报, 2021, 42(3): 624619.
|
|
YANG F T, FAN Z W, XIANG S, et al. Technical innovation and practice of electric aircraft in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 624619 (in Chinese).
|
| [3] |
来鑫, 陈权威, 顾黄辉, 等. 面向 “双碳” 战略目标的锂离子电池生命周期评价: 框架、 方法与进展[J]. 机械工程学报, 2022, 58(22): 3-18.
|
|
LAI X, CHEN Q W, GU H H, et al. Life cycle assessment of lithium-ion batteries for carbon-peaking and carbon-neutrality: Framework, methods, and progress[J]. Journal of Mechanical Engineering, 2022, 58(22): 3-18 (in Chinese).
|
| [4] |
欧阳明高. 我国节能与新能源汽车发展战略与对策[J]. 汽车工程, 2006, 28(4): 317-321.
|
|
OUYANG M G. Chiese strategies and countermeasures for energy saving and vehicles with new types energy[J]. Automotive Engineering, 2006, 28(4): 317-321 (in Chinese).
|
| [5] |
邓景辉. 电动垂直起降飞行器的技术现状与发展[J]. 航空学报, 2024, 45(5): 529937.
|
|
DENG J H. Technical status and development of electric vertical take-off and landing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529937 (in Chinese).
|
| [6] |
LYON R E, WALTERS R N. Energetics of lithium ion battery failure[J]. Journal of Hazardous Materials, 2016, 318: 164-172.
|
| [7] |
JAMES Pozzi, 李璇. 关于锂电池作为民航飞机主要动力来源的争议[J]. 航空维修与工程, 2015(10): 27-28.
|
|
JAMES P, LI X. Lithium-ion batteries: Still at full power?[J]. Aviation Maintenance & Engineering, 2015(10): 27-28 (in Chinese).
|
| [8] |
杨娟, 牛江昊, 张青松. 循环老化锂离子电池热失控气体原位爆炸极限实验分析[J]. 航空学报, 2023, 44(23): 428529.
|
|
YANG J, NIU J H, ZHANG Q S. In-situ explosion limit of thermal runaway gas explosion in cyclic aging lithium-ion batteries: Experimental analysis[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 428529 (in Chinese).
|
| [9] |
ZHANG Q S, YANG K B, NIU J H, et al. Research on the lower explosion limit of thermal runaway gas in lithium batteries under high-temperature and slight overcharge conditions[J]. Journal of Energy Storage, 2024, 79: 109976.
|
| [10] |
顾丽蓉, 王敬德, 张新春, 等. 挤压/冲击工况下圆柱形锂离子电池失效的影响因素分析[J]. 高压物理学报, 2024, 38(4): 154-163.
|
|
GU L R, WANG J D, ZHANG X C, et al. Analysis of influencing factors of failure for cylindrical lithium-ion batteries under compression/impact conditions[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 154-163 (in Chinese).
|
| [11] |
黄晟贤, 徐会升, 王起鹏, 等. 冲击荷载下圆柱型动力锂离子电池的响应特性研究[J]. 储能科学与技术, 2024, 13(10): 3642-3652.
|
|
HUANG S X, XU H S, WANG Q P, et al. Study on response characteristics of cylindrical power lithium-ion battery under impact load [J]. Energy Storage Science and Technology, 2024, 13(10): 3642-3652 (in Chinese).
|
| [12] |
刘新华, 郭斌, 何瑢, 等. 轻型无人机电池动态冲击性能研究[J]. 机械工程学报, 2023, 59(2): 177-186.
|
|
LIU X H, GUO B, HE R, et al. Research on dynamic impact performance of light-UAV battery[J]. Journal of Mechanical Engineering, 2023, 59(2): 177-186 (in Chinese).
|
| [13] |
张青松, 曲奕润. 循环老化三元锂离子电池热失控气体毒性研究[J]. 北京航空航天大学学报, 2024, 50(6): 1761-1769.
|
|
ZHANG Q S, QU Y R. Research on toxicity of gases of thermal runaway released from ternary lithium-ion batteries featuring cyclic aging process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(6): 1761-1769 (in Chinese).
|
| [14] |
张青松, 曲奕润, 刘添添. 锂离子电池热失控气体毒性风险分析方法[J]. 北京航空航天大学学报, 2024, 50(1): 12-19.
|
|
ZHANG Q S, QU Y R, LIU T T. Risk analysis method for thermal runaway gas toxicity of lithium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(1): 12-19 (in Chinese).
|
| [15] |
YANG J, LIU W H, ZHAO H Y, et al. Experimental investigation of lithium-ion batteries thermal runaway propagation consequences under different triggering modes[J]. Aerospace, 2024, 11(6): 438.
|
| [16] |
向硕凌, 王春晓, 孙强, 等. 常压及巡航低压环境下锂电池热失控特性[J]. 消防科学与技术, 2019, 38(8): 1164-1166.
|
|
XIANG S L, WANG C X, SUN Q, et al. Thermal runaway characteristics of lithium batteries under normal pressure and cruising low pressure[J]. Fire Science and Technology, 2019, 38(8): 1164-1166 (in Chinese).
|
| [17] |
ZHANG F S, FENG X N, XU C S, et al. Thermal runaway front in failure propagation of long-shape lithium-ion battery[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121928.
|
| [18] |
LI J Y, GAO P, TONG B, et al. Revealing the mechanism of pack ceiling failure induced by thermal runaway in NCM batteries: A coupled multiphase fluid-structure interaction model for electric vehicles[J]. eTransportation, 2024, 20: 100335.
|
| [19] |
CHEN M Y, OUYANG D X, LIU J H, et al. Investigation on thermal and fire propagation behaviors of multiple lithium-ion batteries within the package[J]. Applied Thermal Engineering, 2019, 157: 113750.
|
| [20] |
CHEN S C, WANG Z R, YAN W, et al. Investigation of impact pressure during thermal runaway of lithium ion battery in a semi-closed space[J]. Applied Thermal Engineering, 2020, 175: 115429.
|
| [21] |
ZHANG Y, KONG D P, PING P, et al. Effect of a plate obstacle on fire behavior of 18650 lithium ion battery: An experimental study[J]. Journal of Energy Storage, 2022, 54: 105283.
|
| [22] |
CHEN H D, BUSTON J E H, GILL J, et al. An experimental study on thermal runaway characteristics of lithium-ion batteries with high specific energy and prediction of heat release rate[J]. Journal of Power Sources, 2020, 472: 228585.
|
| [23] |
PING P, KONG D P, ZHANG J Q, et al. Characterization of behavior and hazards of fire and deflagration for high-energy Li-ion cells by over-heating[J]. Journal of Power Sources, 2018, 398: 55-66.
|
| [24] |
ZOU K Y, CHEN X, DING Z W, et al. Jet behavior of prismatic lithium-ion batteries during thermal runaway[J]. Applied Thermal Engineering, 2020, 179: 115745.
|
| [25] |
CHEN S C, WANG Z R, YAN W. Identification and characteristic analysis of powder ejected from a lithium ion battery during thermal runaway at elevated temperatures[J]. Journal of Hazardous Materials, 2020, 400: 123169.
|
| [26] |
KONG D, WANG G Q, PING P, et al. A coupled conjugate heat transfer and CFD model for the thermal runaway evolution and jet fire of 18650 lithium-ion battery under thermal abuse[J]. eTransportation, 2022, 12: 100157.
|