收稿日期:
2023-12-27
修回日期:
2024-02-01
接受日期:
2024-03-07
出版日期:
2024-03-21
发布日期:
2024-03-19
通讯作者:
田野
E-mail:tianye@cardc.cn
基金资助:
Wen SHI, Jialing LE, Ye TIAN()
Received:
2023-12-27
Revised:
2024-02-01
Accepted:
2024-03-07
Online:
2024-03-21
Published:
2024-03-19
Contact:
Ye TIAN
E-mail:tianye@cardc.cn
Supported by:
摘要:
超燃冲压发动机内流动及燃烧特性得到了持续和广泛的重视及研究,相关试验研究工作大多依赖于燃烧加热风洞地面试验设备,酒精、氢气、煤油等燃料的燃烧可加热试验气体并达到设计点,通过补氧的方式保证氧气的摩尔分数,燃料的燃烧必然会引入多种污染组分。燃烧加热器内污染组分的存在使得地面试验结果偏离真实飞行条件所得结果,污染效应则已成为提高地面试验结果外推准确性所亟待研究的问题。针对污染组分对超燃冲压发动机点火特性、性能、燃烧模态转换的影响、污染空气来流参数匹配方案及污染效应修正这五个方面进行了系统的综述,梳理了污染效应的研究进展。研究发现:大多数情况下,对于甲烷、乙烯、煤油等燃料,污染组分H2O会减小点火延迟时间、促进燃料点火,CO2会抑制燃烧,自由基及中间产物会明显促进点火,CO2污染组分对燃料燃烧的抑制效果比相同摩尔分数的H2O更显著且抑制影响表现出非线性的影响趋势。目前已有参数匹配方案均难以在宽速域及宽当量比范围内削弱污染效应即地面试验与真实飞行试验所得结果的偏差,污染效应修正技术实现尚有困难。
中图分类号:
时文, 乐嘉陵, 田野. 污染组分对超燃冲压发动机工作特性影响[J]. 航空学报, 2024, 45(19): 30027.
Wen SHI, Jialing LE, Ye TIAN. Vitiation effects on scramjet operational characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(19): 30027.
表 7
纯净空气和污染组分来流下各项参数
当量比 | 燃烧室入口参数 | 喷注参数 | |||||
---|---|---|---|---|---|---|---|
污染组分 | 总压/kPa | 总温/K | 马赫数 | 总压/kPa | 总温/K | 马赫数 | |
0.73 | 纯空气 | 810 | 840 | 2 | 5 940 | 300 | 1 |
5.3%H2O | 825 | 839 | 2 | 5 940 | 300 | 1 | |
8.3% H2O | 821 | 850 | 2 | 5 940 | 300 | 1 | |
5.21%H2O+4.66%CO2 | 811 | 845 | 2 | 5 650 | 300 | 1 | |
0.53 | 纯空气 | 811 | 830 | 2 | 4 260 | 300 | 1 |
4.36%H2O | 822 | 840 | 2 | 4 050 | 300 | 1 | |
4.6%H2O+3.75%CO2 | 827 | 840 | 2 | 4 115 | 300 | 1 | |
1.00 | 纯空气 | 2 040 | 1 665 | 2.33 | 5 600 | 330 | 1 |
11.67%H2O+7.77%CO2 | 2 040 | 1 665 | 2.33 | 5 580 | 330 | 1 |
表 8
不同工况下模态转换临界燃料当量比
隔离段入口马赫数 | 总压/kPa | 总温/K | 总温相同 | 总焓相同 | 壅塞位置 | 工况 | ||
---|---|---|---|---|---|---|---|---|
当量比(纯空气) | 当量比(污染来流) | 当量比(纯空气) | 总温/K | |||||
1.85 | 450 | 876 | 0.08~0.09 | 0.08~0.09 | 0.07~0.08 | 862 | 等截面处 | a |
2 | 330 | 1 200 | 0.18~0.19 | 0.20~0.21 | 0.18~0.19 | 1 161 | ||
2 | 830 | 1 169 | 0.18~0.19 | 0.19~0.20 | 0.18~0.19 | 1 134 | b | |
2.2 | 813 | 1 257 | 0.26~0.27 | 0.27~0.28 | 0.24~0.25 | 1 212 | 扩张段 | c |
2.5 | 1 000 | 1 200 | 0.29~0.30 | 0.30~0.31 | 0.28~0.29 | 1 161 | d |
1 | BOUCHEZ M, ROUDAKOV A, KOPCHENOV V, et al. French-Russian analysis of kholod dual-mode ramjet flight experiments[C]∥ AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005. |
2 | FERLEMANN S, MCCLINTON C, ROCK K, et al. Hyper-X Mach 7 scramjet design, ground test and flight results[C]∥ AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005. |
3 | POWELL O A, EDWARDS J T, NORRIS R B, et al. Development of hydrocarbon-fueled scramjet engines: The hypersonic technology (HyTech) program[J]. Journal of Propulsion and Power, 2001, 17(6): 1170-1176. |
4 | HAUDRICH D, BRASE L. Flutter and divergence assessment of the HyFly missile[C]∥ 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009. |
5 | VOLAND R T, HUEBNER L D, MCCLINTON C R. X-43A hypersonic vehicle technology development[J]. Acta Astronautica, 2006, 59(1-5): 181-191. |
6 | 丁猛, 梁剑寒, 刘卫东, 等. 碳氢燃料超燃冲压发动机进气道与燃烧室匹配性能试验研究[J]. 航空学报, 2005, 26(1): 27-31. |
DING M, LIANG J H, LIU W D, et al. Experimental study on the interaction between inlet and combustor of hydrocarbon fueled scramjet[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(1): 27-31 (in Chinese). | |
7 | WALKER S, RODGERS F, PAULL A, et al. HyCAUSE flight test program[C]∥ 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
8 | 陈钱, 张会强, 王兵, 等. 超声速混合层燃烧研究进展[J]. 航空学报, 2017, 38(1): 020036. |
CHEN Q, ZHANG H Q, WANG B, et al. Research progress of combustion in supersonic mixing layers[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 020036 (in Chinese). | |
9 | 杨越, 游加平, 孙明波. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型[J]. 航空学报, 2015, 36(1): 261-273. |
YANG Y, YOU J P, SUN M B. Modeling of turbulence-chemistry interactions in numerical simulations of supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 261-273 (in Chinese). | |
10 | 林宇震, 李林, 张弛, 等. 液体射流喷入横向气流混合特性研究进展[J]. 航空学报, 2014, 35(1): 46-57. |
LIN Y Z, LI L, ZHANG C, et al. Progress on the mixing of liquid jet injected into a crossflow[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 46-57 (in Chinese). | |
11 | 齐伟呈, 徐惊雷, 范志鹏, 等. 马赫数2~4连续可调风洞数值模拟及静态标定试验[J]. 航空学报, 2017, 38(1): 120155. |
QI W C, XU J L, FAN Z P, et al. Numerical simulation and experimental calibration of continuously adjustable wind tunnel with Mach number 2 to 4[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 120155 (in Chinese). | |
12 | 唐志共, 许晓斌, 杨彦广, 等. 高超声速风洞气动力试验技术进展[J]. 航空学报, 2015, 36(1): 86-97. |
TANG Z G, XU X B, YANG Y G, et al. Research progress on hypersonic wind tunnel aerodynamic testing techniques[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 86-97 (in Chinese). | |
13 | 王铁进, 施岳定, 邓志强, 等. 常规高超声速风洞的节能方案研究[J]. 实验流体力学, 2016, 30(6): 71-75, 104. |
WANG T J, SHI Y D, DENG Z Q, et al. Preliminary study on energy-saving layout for conventional hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 71-75, 104 (in Chinese). | |
14 | GUY R, ROGERS R, PUSTER R, et al. The NASA Langley scramjet test complex[C]∥ 32nd Joint Propulsion Conference and Exhibit. Reston: AIAA, 1996. |
15 | 尹光辉. Φ200(高)超声速风洞的设计调试及相关试验研究[D]. 长沙: 国防科学技术大学, 2008: 32-34. |
YIN G H. Design, debugging and related experimental study of φ 200 supersonic wind tunnel[D]. Changsha: National University of Defense Technology, 2008: 32-34 (in Chinese). | |
16 | PELLETT G, BRUNO C, CHINITZ W. Review of air vitiation effects on scramjet ignition and flameholding combustion processes[C]∥ 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2002. |
17 | 白菡尘, 陈军. 双模态冲压发动机等效热力过程与性能关系原理[M]. 北京: 国防工业出版社, 2018: 120-122. |
BAI H C, CHEN J. Connection principle between dual-mode scramjet performance and equivalent thermal-dynamic process[M]. Beijing: National Defense Industry Press, 2018: 120-122 (in Chinese). | |
18 | 姜宏亮. 基于TDLAS的污染组分对高超声速试验热力学参数的影响研究[D]. 合肥: 中国科学技术大学, 2014: 35-45. |
JIANG H L. Study on the influence of pollution components on thermodynamic parameters of hypersonic test based on TDLAS[D]. Hefei: University of Science and Technology of China, 2014: 35-45 (in Chinese). | |
19 | 姜宏亮, 刘坤伟, 金熠, 等. 污染组分对高超声速试验热力学参数影响研究[J]. 实验流体力学, 2015, 29(1): 25-30. |
JIANG H L, LIU K W, JIN Y, et al. An experimental investigation on the vitiation effects of hypersonic testing of aerothermal behaviors[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(1): 25-30 (in Chinese). | |
20 | 宋文艳, 王艳华. 加热方式对煤油燃料超声速燃烧室性能影响研究[J]. 实验流体力学, 2018, 32(5): 7-12. |
SONG W Y, WANG Y H. Experimental study of the effects of heating methods on combustion characteristics in a supersonic combustor[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 7-12 (in Chinese). | |
21 | 刘坤伟. 燃烧加热污染组分对高超气动/推进性能影响研究[D]. 合肥: 中国科学技术大学, 2016: 31-45. |
LIU K W. Study on the influence of combustion heating pollution components on hypersonic aerodynamic/propulsion performance[D]. Hefei: University of Science and Technology of China, 2016: 31-45 (in Chinese). | |
22 | JACHIMOWSKI C J, HOUGHTON W M. Effect of carbon dioxide and water vapor on the induction period of the hydrogen-oxygen reaction: NASA TND-X685[R]. Washington, D.C.: NASA, 1968. |
23 | EDELMAN R B, SPADACCINI L J. Theoretical effects of vitiated air contamination on ground testing of hypersonic airbreathing engines[J]. Journal of Spacecraft and Rockets, 1969, 6(12): 1442-1447. |
24 | EDELMAN R B. The effect of vitiated air contamination on ground testing: AIAA-1969-0456 [R]. Reston: AIAA, 1969. |
25 | SRINIVASAN S, ERICKSON W. Interpretation of vitiation effects on testing at Mach 7 flight conditions[C]∥ 31st Joint Propulsion Conference and Exhibit. Reston: AIAA, 1995. |
26 | SRINIVASAN S, ERICKSON W. Influence of test-gas vitiation on mixing and combustion at Mach 7 flight conditions[C]∥ Proceedings of the 30th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1994. |
27 | SLACK M, GRILLO A. Investigation of hydrogen-air ignition sensitized by nitric oxide and by nitrogen dioxide: NASA CR-2896 [R]. Washington, D.C.: NASA, 1978. |
28 | GURENTSOV E V, DIVAKOV O G, EREMIN A V. Ignition of multicomponent hydrocarbon/air mixtures behind shock waves[J]. High Temperature, 2002, 40(3): 379-386. |
29 | MITANI T, HIRAIWA T, SATO S, et al. Scramjet engine testing in Mach 6 vitiated air[C]∥ Space Plane and Hypersonic Systems and Technology Conference. Reston: AIAA, 1996. |
30 | MITANI T, HIRAIWA T, SATO S, et al. Comparison of scramjet engine performance in Mach 6 vitiated and storage-heated air[J]. Journal of Propulsion and Power, 1997, 13(5): 635-642. |
31 | 刘伟雄, 贺伟, 李宏斌, 等. 污染组分对氢燃料发动机燃烧动力学的影响[J]. 科学通报, 2008, 53(18): 2257-2260. |
LIU W X, HE W, LI H B, et al. Effect of pollutant components on combustion dynamics of hydrogen-fueled engine[J]. Chinese Science Bulletin, 2008, 53(18): 2257-2260 (in Chinese). | |
32 | 邵菊香, 谈宁馨, 刘伟雄, 等. 空气污染组分H_2O和CO_2对乙烯燃烧性能的影响(Ⅱ): 反应机理和动力学模拟[J]. 物理化学学报, 2010, 26(2): 270-276. |
SHAO J X, TAN N X, LIU W X, et al. Influence of H2O and CO2 in air on the combustion of ethylene (Ⅱ)—reaction mechanism and kinetics simulation[J]. Acta Physico-Chimica Sinica, 2010, 26(2): 270-276 (in Chinese). | |
33 | 梁金虎, 胡弘浩, 王苏, 等. 空气污染组分H2O和CO2对乙烯点火特性的影响[J]. 推进技术, 2014, 35(2): 220-226. |
LIANG J H, HU H H, WANG S, et al. Effects of H2O and CO2 in vitiated air on ignition characteristic of ethylene[J]. Journal of Propulsion Technology, 2014, 35(2): 220-226 (in Chinese). | |
34 | 梁金虎, 王苏, 张灿, 等. H2O/CO2污染对RP-3航空煤油着火特性的影响[J]. 推进技术, 2015, 36(3): 336-344. |
LIANG J H, WANG S, ZHANG C, et al. Effects of H2O and CO2 on ignition characteristics of RP-3 aviation kerosene[J]. Journal of Propulsion Technology, 2015, 36(3): 336-344 (in Chinese). | |
35 | LIANG J H, WANG S, ZHANG S T, et al. The vitiation effects of water vapor and carbon dioxide on the autoignition characteristics of kerosene[J]. Acta Mechanica Sinica, 2014, 30(4): 485-494. |
36 | INGENITO A. Theoretical investigation of air vitiation effects on hydrogen fuelled scramjet performance[J]. International Journal of Hydrogen Energy, 2015, 40(6): 2862-2870. |
37 | 张方. 航空煤油燃烧机理简化及点火和熄火燃烧特性研究[D]. 绵阳: 西南科技大学, 2018: 51-55. |
ZHANG F. Study on combustion mechanism simplification and ignition and flameout combustion characteristics of aviation kerosene[D]. Mianyang: Southwest University of Science and Technology, 2018: 51-55 (in Chinese). | |
38 | 陈军. Ma4~7双模态冲压发动机燃烧室热力工作过程与性能潜力研究[D]. 绵阳: 中国空气动力研究与发展中心, 2016: 119-138. |
CHEN J. Study on thermodynamic working process and performance potential of combustion chamber of MA4 ~ 7 dual-mode ramjet[D]. Mianyang: China Aerodynamics Research and Development Center, 2016: 119-138 (in Chinese). | |
39 | 李卫强. 水组分对超燃冲压发动机燃烧室性能的影响[D]. 西安: 西北工业大学, 2006: 42-54. |
LI W Q. Effect of water composition on combustion chamber performance of scramjet[D]. Xi’an: Northwestern Polytechnical University, 2006: 42-54 (in Chinese). | |
40 | 罗飞腾, 宋文艳, 刘昊. 污染空气对氢燃料超声速燃烧室性能的影响[J]. 推进技术, 2010, 31(4): 401-405. |
LUO F T, SONG W Y, LIU H. Experimental investigation for vitiated air effects on hydrogen-fueled supersonic combustor performance[J]. Journal of Propulsion Technology, 2010, 31(4): 401-405 (in Chinese). | |
41 | 王磊, 宋文艳, 罗飞腾. H2O组分对氢燃料超音速燃烧室性能的影响[J]. 航空工程进展, 2010, 1(2): 159-163. |
WANG L, SONG W Y, LUO F T. Research on the effects of H2O contaminant on hydrogen-fueled supersonic combustor performance[J]. Advances in Aeronautical Science and Engineering, 2010, 1(2): 159-163 (in Chinese). | |
42 | LUO F T, SONG W Y, ZHANG Z Q, et al. Experimental and numerical studies of vitiated air effects on hydrogen-fueled supersonic combustor performance[J]. Chinese Journal of Aeronautics, 2012, 25(2): 164-172. |
43 | 邢建文, 杨样. H2O污染对超燃冲压发动机燃烧室性能影响的三维数值模拟[J]. 推进技术, 2011, 32(1): 5-10. |
XING J W, YANG Y. Three-dimensional simulation of H2O vitiation effects on combustor performance for scramjet[J]. Journal of Propulsion Technology, 2011, 32(1): 5-10 (in Chinese). | |
44 | 邢建文, 肖保国. H_2O污染对煤油燃料超燃冲压发动机燃烧室性能影响的数值模拟[J]. 航空动力学报, 2012, 27(11): 2408-2413. |
XING J W, XIAO B G. Numerical simulation of H2O vitiation effects on kerosene-fueled scramjet combustor performance[J]. Journal of Aerospace Power, 2012, 27(11): 2408-2413 (in Chinese). | |
45 | ZHONG Z P. Key technology and experimental results of the clean air heated facility for supersonic combustion[J]. Chinese Journal of Mechanical Engineering, 2009, 22(5): 760-765. |
46 | 邢建文, 李卫强, 肖保国. 不同燃料燃烧加热对超燃冲压发动机性能影响的分析与评估[J]. 推进技术, 2013, 34(12): 1636-1642. |
XING J W, LI W Q, XIAO B G. Effects of different fueled combustion heater on scramjet performance[J]. Journal of Propulsion Technology, 2013, 34(12): 1636-1642 (in Chinese). | |
47 | 侯凌云, 杨缙, 马雪松, 等. 空气污染各组分对甲烷超声速燃烧性能的影响[J]. 物理化学学报, 2010, 26(12): 3150-3156. |
HOU L Y, YANG J, MA X S, et al. Effects of species in vitiation air on methane-fueled supersonic combustion[J]. Acta Physico-Chimica Sinica, 2010, 26(12): 3150-3156 (in Chinese). | |
48 | 侯凌云, 杨缙, 马雪松, 等. 乙醇燃烧加热空气污染物对煤油超燃的影响[J]. 航空动力学报, 2011, 26(9): 1921-1927. |
HOU L Y, YANG J, MA X S, et al. Influences of vitiation air from ethanol-fueled heating on kerosene-fueled supersonic combustion[J]. Journal of Aerospace Power, 2011, 26(9): 1921-1927 (in Chinese). | |
49 | CHEN C Q, TIAN L, XU X. Numerical study of test gas vitiation effects on hydrogen-fueled scramjet combustion[J]. Journal of Aerospace Power, 2012, 27(2): 326-334. |
50 | 李建平, 宋文艳, 罗飞腾, 等. H2O/CO2污染对煤油燃料超声速燃烧影响数值研究[J]. 推进技术, 2013, 34(4): 562-571. |
LI J P, SONG W Y, LUO F T, et al. Numerical investigation of H2O/CO2 vitiation effects on kerosene-fueled supersonic combustion[J]. Journal of Propulsion Technology, 2013, 34(4): 562-571 (in Chinese). | |
51 | SONG W Y, WANG Y H, FU Q, et al. Experimental investigation of test medium vitiation effects on supersonic combustion[C]∥ Proceedings of 2014 11th International Bhurban Conference on Applied Sciences & Technology (IBCAST). Piscataway: IEEE Press, 2014: 304-312. |
52 | 陈亮, 宋文艳, 罗飞腾. H2O/CO2污染对煤油燃料双模态超声速燃烧室影响研究[J]. 推进技术, 2015, 36(2): 253-260. |
CHEN L, SONG W Y, LUO F T. Vitiation effects of H2O/CO2 on kerosene-fueled dual-mode supersonic combustor performance[J]. Journal of Propulsion Technology, 2015, 36(2): 253-260 (in Chinese). | |
53 | LI J P, SONG W Y, LUO F T, et al. Experimental investigation of vitiation effects on supersonic combustor performance[J]. Acta Astronautica, 2014, 96: 296-302. |
54 | 陈军, 白菡尘, 柳森. 总焓模拟含水实验介质对双模态燃烧室过程与性能的影响分析[J]. 推进技术, 2017, 38(1): 112-118. |
CHEN J, BAI H C, LIU S. Analysis of water-vitiated medium effects on dual-mode combustor process for enthalpy-simulated method[J]. Journal of Propulsion Technology, 2017, 38(1): 112-118 (in Chinese). | |
55 | MCDANIEL J C, KRAUSS R H, WHITEHURST W B, et al. Test gas vitiation effects in a dual-mode combustor: AIAA-2003-6960 [R]. Reston: AIAA, 2003. |
56 | GOYNE C P, MCDANIEL J C, KRAUSS R H, et al. Test gas vitiation effects in a dual-mode scramjet combustor[J]. Journal of Propulsion and Power, 2007, 23(3): 559-565. |
57 | ROCKWELL R, GOYNE C, HAW W, et al. Experimental study of test medium vitiation effects on dual-mode scramjet mode transition[C]∥ 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
58 | HAW W L, GOYNE C P, ROCKWELL R D, et al. Experimental study of vitiation effects on scramjet mode transition[J]. Journal of Propulsion and Power, 2011, 27(2): 506-508. |
59 | ROCKWELL R D, GOYNE C P, HAW W, et al. Experimental study of test-medium vitiation effects on dual-mode scramjet performance[J]. Journal of Propulsion and Power, 2011, 27(5): 1135-1142. |
60 | NODA J. Quasi-one dimensional modeling on vitiation effects for a dual-mode combustor: AIAA-2012-5862 [R]. Reston: AIAA, 2012. |
61 | 张志强, 宋文艳, 罗飞腾. H2O/CO2组分对氢和乙烯超声速燃烧室性能影响数值模拟[J]. 西北工业大学学报, 2012, 30(2): 256-261. |
ZHANG Z Q, SONG W Y, LUO F T. Numerical investigation of effects of H2O/CO2 vitiation on performance of hydrogen and ethylene supersonic combustors[J]. Journal of Northwestern Polytechnical University, 2012, 30(2): 256-261 (in Chinese). | |
62 | VOLAND R, AUSLENDER A, SMART M, et al. CIAM/NASA Mach 6.5 scramjet flight and ground test[C]∥ 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1999. |
63 | 郭帅帆, 宋文艳, 李建平, 等. 燃烧加热污染空气对超燃冲压发动机性能影响研究[J]. 推进技术, 2013, 34(4): 493-498. |
GUO S F, SONG W Y, LI J P, et al. Numerical investigation of effects of vitiated air on scramjet performance[J]. Journal of Propulsion Technology, 2013, 34(4): 493-498 (in Chinese). | |
64 | BOYCE R R, PAULL A, STALKER R J, et al. Comparison of supersonic combustion between impulse and vitiation-heated facilities[J]. Journal of Propulsion and Power, 2000, 16(4): 709-717. |
65 | 陈亮, 宋文艳, 罗飞腾, 等. 燃烧加热污染空气对煤油超燃冲压发动机性能的影响[J]. 航空动力学报, 2013, 28(11): 2408-2418. |
CHEN L, SONG W Y, LUO F T, et al. Effects of combustion heating vitiated air on kerosene-fueled scramjet performance[J]. Journal of Aerospace Power, 2013, 28(11): 2408-2418 (in Chinese). | |
66 | 刘坤伟, 朱雨建, 杨基明, 等. 两种燃烧加热风洞参数匹配方案的比较[J]. 推进技术, 2017, 38(6): 1226-1234. |
LIU K W, ZHU Y J, YANG J M, et al. Comparison of two typical flow-parameter-matching schemes in a combustion wind tunnel[J]. Journal of Propulsion Technology, 2017, 38(6): 1226-1234 (in Chinese). | |
67 | 谭宇, 毛雄兵, 焦伟, 等. 燃烧风洞不同模拟方式对超燃发动机性能影响试验研究[J]. 推进技术, 2017, 38(9): 2062-2068. |
TAN Y, MAO X B, JIAO W, et al. Experimental investigation of effects of different simulation way of combustion heating wind tunnel on scramjet performance[J]. Journal of Propulsion Technology, 2017, 38(9): 2062-2068 (in Chinese). | |
68 | WANG Y H, SONG W Y, FU Q, et al. Experimental study of vitiation effects on hydrogen/kerosene fueled supersonic combustor[J]. Aerospace Science and Technology, 2017, 60: 108-114. |
[1] | 乔竑玮, 梁剑寒, 张林, 孙明波, 陈玉俏. 超声速燃烧中的概率密度函数方法研究进展[J]. 航空学报, 2024, 45(8): 28802-028802. |
[2] | 刘小勇, 王明福, 刘建文, 任鑫, 张轩. 超燃冲压发动机研究回顾与展望[J]. 航空学报, 2024, 45(5): 529878-529878. |
[3] | 纪鉴恒, 蔡尊, 王泰宇, 孙明波, 王振国. 宽速域超燃冲压发动机流动燃烧过程研究进展[J]. 航空学报, 2024, 45(3): 28696-028696. |
[4] | 赵子健, 刘朝阳, 黄伟. 支板/凹腔燃烧室混合与燃烧性能研究进展[J]. 航空学报, 2024, 45(16): 29765-029765. |
[5] | 于江飞, 汤涛, 闫博, 汪洪波, 杨揖心, 熊大鹏, 孙明波. 马赫数6飞行条件圆截面超燃冲压发动机流动燃烧特征分析[J]. 航空学报, 2024, 45(14): 129575-129575. |
[6] | 汤涛, 于江飞, 黄玉辉, 汪洪波, 孙明波, 赵国焱, 熊大鹏, 王振国. 圆截面超声速燃烧室乙烯燃料喷注火焰结构和模式分析[J]. 航空学报, 2024, 45(11): 528880-528880. |
[7] | 吴忧, 陈兵, 杨庆春, 徐旭. 碳氢燃料超燃冲压发动机热非平衡效应[J]. 航空学报, 2024, 45(11): 529399-529399. |
[8] | 赵翔, 夏智勋, 方传波, 马立坤, 李潮隆, 段一凡. 固体火箭超燃冲压发动机理论性能分析[J]. 航空学报, 2023, 44(5): 126971-126971. |
[9] | 宋家辉, 许爱国, 苗龙, 廖煜淦, 梁福文, 田丰, 聂明卿, 王宁飞. 激波/平板层流边界层干扰熵增特性[J]. 航空学报, 2023, 44(21): 528520-528520. |
[10] | 夏智勋, 冯运超, 马立坤, 陈斌斌, 李潮隆, 杨鹏年, 刘延东, 屈影, 赵康淳, 赵李北, 任鹏浩. 固体火箭超燃冲压发动机燃烧技术研究进展[J]. 航空学报, 2023, 44(15): 528793-528793. |
[11] | 李潮隆, 夏智勋, 马立坤, 赵翔, 罗振兵, 段一凡. 固体火箭超燃冲压发动机性能试验[J]. 航空学报, 2022, 43(12): 126075-126075. |
[12] | 陈以勒, 俞凯凯, 徐惊雷. 几何尺寸约束的超燃冲压发动机推力喷管设计[J]. 航空学报, 2021, 42(6): 124259-124259. |
[13] | 曾徽, 陈智铭, 闫宪翔, 欧东斌, 董永晖. 电弧加热器铜污染组分效应发射光谱定量研究[J]. 航空学报, 2020, 41(4): 123521-123521. |
[14] | 孟宇, 顾洪斌, 孙文明, 张新宇. 微波增强滑移电弧等离子体辅助超声速燃烧[J]. 航空学报, 2020, 41(2): 123345-123345. |
[15] | 孟宇, 顾洪斌, 张新宇. 微波对超声速燃烧火焰结构的影响[J]. 航空学报, 2019, 40(12): 123224-123224. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 139
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 167
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学