孙晓峰1,2, 张光宇2(), 王晓宇2, 李磊2, 邓向阳3, 程荣辉4
收稿日期:
2023-03-22
修回日期:
2023-04-17
接受日期:
2023-05-10
出版日期:
2023-07-25
发布日期:
2023-05-12
通讯作者:
张光宇
E-mail:guangyu.zhang@buaa.edu.cn
基金资助:
Xiaofeng SUN1,2, Guangyu ZHANG2(), Xiaoyu WANG2, Lei LI2, Xiangyang DENG3, Ronghui CHENG4
Received:
2023-03-22
Revised:
2023-04-17
Accepted:
2023-05-10
Online:
2023-07-25
Published:
2023-05-12
Contact:
Guangyu ZHANG
E-mail:guangyu.zhang@buaa.edu.cn
Supported by:
摘要:
燃烧不稳定性问题广泛出现在各类航空发动机燃烧室内,该问题是火焰非定常热释放和声波充分耦合的结果,发生时伴随着大幅度的压力脉动,严重威胁发动机的稳定工作及结构安全。目前,包括中国在内的各航空发动机研制国家在多数发动机型号的研制过程中,均遇到了严重的燃烧不稳定性问题,且发动机越先进,该问题越复杂且难以解决。在深入认识其发生机理的基础上,对其进行准确预测并设计有效的控制手段,对航空发动机的研制具有重要意义。系统阐述了该问题的研究现状,介绍了燃烧不稳定性问题发生关键,即军用的钝体燃烧加力燃烧室和民用的贫油预混环形燃烧室的非定常流动及火焰响应特征。综述了该问题研究常用的燃烧不稳定性声网络预测分析模型,重点报告了为了耦合考虑燃烧室声软壁面被动控制设计,团队所发展的三维燃烧不稳定性预测控制模型。基于该模型,介绍了壁面声衬参数及布局对燃烧不稳定模态控制效果影响的研究进展,为先进发动机燃烧不稳定性的排故提供技术储备。
中图分类号:
孙晓峰, 张光宇, 王晓宇, 李磊, 邓向阳, 程荣辉. 航空发动机燃烧不稳定性预测及控制研究进展[J]. 航空学报, 2023, 44(14): 628733-628733.
Xiaofeng SUN, Guangyu ZHANG, Xiaoyu WANG, Lei LI, Xiangyang DENG, Ronghui CHENG. Research progress in aero-engine combustion instability prediction and control[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628733-628733.
表1
2种燃烧室内涉及燃烧不稳定性问题特点
类型 | 加力燃烧室 | LPP环形燃烧室 |
---|---|---|
特点 | 进口温度高(~1 300 K) 进口流速高(~290 m/s) 结构紧凑(燃油/稳定器一体化) 包线工况复杂(战机Ma~2.0) | 高温高压(~2 000 K,40 atm) 结构紧凑(燃烧室长度~0.2 m) 能量密度比高(~100 MW/(m³∙bar)) 排放更低(比CAEP6降低60%) |
火焰 | 非预混钝体火焰 | 预混旋流火焰 |
非定常过程 | 燃油喷射穿透、雾化、 蒸发、当量比脉动、剪切层、尾迹、燃烧火焰 | 燃油雾化蒸发、预混、旋流、涡破碎、PVC、剪切层、燃烧火焰 |
模态特征 | 纵向不稳定模态50~300 Hz、 横向(周向/径向)不稳定模态400~1 500 Hz | 周向一阶、二阶不稳定性模态400~1 000 Hz |
常用控制方法 | 防振屏设计、火焰稳定器设计、供油规律设计、喷口调节设计 | 旋流器设计、分级燃烧、壁面声耗散设计 |
1 | LIEUWEN T C, YANG V. Combustion instabilities in gas turbine engines: Operational experience, fundamental mechanisms and modeling[M]. Reston: AIAA, 2005. |
2 | 李磊, 孙晓峰. 推进动力系统燃烧不稳定性产生的机理、预测及控制方法[J]. 推进技术, 2010, 31(6): 710-720. |
LI L, SUN X F. Mechanism, prediction and control method of combustion instability in propulsion system[J]. Journal of Propulsion Technology, 2010, 31(6): 710-720 (in Chinese). | |
3 | POINSOT T. Prediction and control of combustion instabilities in real engines[J]. Proceedings of the Combustion Institute, 2017, 36(1): 1-28. |
4 | Lewis Laboratory Staff. A summary of preliminary investigations into the characteristics of combustion screech in ducted burners: 1384[R]. Washington, D.C.: NACA, 1958. |
5 | OEFELEIN J C, YANG V. Comprehensive review of liquid-propellant combustion instabilities in F-1 engines[J]. Journal of Propulsion and Power, 1993, 9(5): 657-677. |
6 | FOUST M, THOMSEN D, STICKLES R, et al. Development of the GE aviation low emissions TAPS combustor for next generation aircraft engines[C]∥ Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
7 | LOVETT J, BROGAN T, PHILIPPONA D, et al. Development needs for advanced afterburner designs[C]∥ Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2004. |
8 | 程荣辉, 张志舒, 陈仲光. 第四代战斗机动力技术特征和实现途径[J]. 航空学报, 2019, 40(3): 022698. |
CHENG R H, ZHANG Z S, CHEN Z G. Technical characteristics and implementation of the fourth-generation jet fighter engines[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 022698 (in Chinese). | |
9 | EBRAHIMI H. Overview of gas turbine augmentor design, operation, and combustion oscillation[C]∥ Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2006. |
10 | MONGIA H. TAPS: A fourth generation propulsion combustor technology for low emissions[C]∥ Proceedings of the AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Reston: AIAA, 2003. |
11 | RAYLEIGH J W S. The theory of sound[M]. 2nd ed. London: Macmillan, 1896. |
12 | HOEIJMAKERS M, KORNILOV V, LOPEZ ARTEAGA I, et al. Intrinsic instability of flame-acoustic coupling[J]. Combustion and Flame, 2014, 161(11): 2860-2867. |
13 | EMMERT T, BOMBERG S, POLIFKE W. Intrinsic thermoacoustic instability of premixed flames[J]. Combustion and Flame, 2015, 162(1): 75-85. |
14 | SUMMERFIELD M. A theory of unstable combustion in liquid propellant rocket systems[J]. Journal of the American Rocket Society, 1951, 21(5): 108-114. |
15 | CROCCO L, CHENG S I. Theory of combustion instability in liquid propellant rocket motors[J]. The Aeronautical Journal, 1956, 60(547): 493-494. |
16 | ZINN B T. A theoretical study of nonlinear combustion instability in liquid-propellant rocket engines[J]. AIAA Journal, 1968, 6(10): 1966-1972. |
17 | ZINN B T, LORES M E. Application of the Galerkin method in the solution of non-linear axial combustion instability problems in liquid rockets[J]. Combustion Science and Technology, 1971, 4(1): 269-278. |
18 | KOSTKA S, LYNCH A C, HUELSKAMP B C, et al. Characterization of flame-shedding behavior behind a bluff-body using proper orthogonal decomposition[J]. Combustion and Flame, 2012, 159(9): 2872-2882. |
19 | ROGERS D E, MARBLE F E. A mechanism for high-frequency oscillation in ramjet combustors and afterburners[J]. Journal of Jet Propulsion, 1956, 26(6): 456-462. |
20 | LOVETT J A, CROSS C, LUBARSKY E, et al. A review of mechanisms controlling bluff-body stabilized flames with closely-coupled fuel injection[C]∥ ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2011. |
21 | LUBARSKY E, CROSS C, CUTRIGHT J, et al. Novel carbureted flameholder for improved afterburner stability[C]∥ Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
22 | SHANBHOGUE S J, HUSAIN S, LIEUWEN T. Lean blowoff of bluff body stabilized flames: Scaling and dynamics[J]. Progress in Energy and Combustion Science, 2009, 35(1): 98-120. |
23 | EMERSON B, LIEUWEN T. Dynamics of harmonically excited, reacting bluff body wakes near the global hydrodynamic stability boundary[J]. Journal of Fluid Mechanics, 2015, 779: 716-750. |
24 | EMERSON B, O'CONNOR J, JUNIPER M, et al. Density ratio effects on reacting bluff-body flow field characteristics[J]. Journal of Fluid Mechanics, 2012, 706: 219-250. |
25 | PALIES P, SCHULLER T, DUROX D, et al. Modeling of premixed swirling flames transfer functions[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2967-2974. |
26 | WORTH N A, DAWSON J R. Self-excited circumferential instabilities in a model annular gas turbine combustor: Global flame dynamics[J]. Proceedings of the Combustion Institute, 2013, 34(2): 3127-3134. |
27 | BOURGOUIN J F, DUROX D, SCHULLER T, et al. Ignition dynamics of an annular combustor equipped with multiple swirling injectors[J]. Combustion and Flame, 2013, 160(8): 1398-1413. |
28 | WORTH N A, DAWSON J R. Modal dynamics of self-excited azimuthal instabilities in an annular combustion chamber[J]. Combustion and Flame, 2013, 160(11): 2476-2489. |
29 | LIEUWEN T, TORRES H, JOHNSON C, et al. A mechanism of combustion instability in lean premixed gas turbine combustors[J]. Journal of Engineering for Gas Turbines and Power, 2001, 123(1): 182-189. |
30 | ZUKOSKI E E, MARBLE F E. Experiments concerning the mechanism of flame blowoff from bluff bodies: 82A[R]. Pasadena: California Institute of Technology, 1983. |
31 | ZUKOSKI E E. Afterburners[M]∥OATES G C. Aerothermodynamics of Aircraft Engine Components. Reston: AIAA, 1985: 45-144. |
32 | SUN X, WANG X. Fundamentals of aeroacoustics with applications to aeropropulsion systems[M]. Amsterdam: Elsevier, 2020. |
33 | SHANBHOGUE S, SHIN D H, HEMCHANDRA S, et al. Flame-sheet dynamics of bluff-body stabilized flames during longitudinal acoustic forcing[J]. Proceedings of the Combustion Institute, 2009, 32(2): 1787-1794. |
34 | EMERSON B, MONDRAGON U, ACHARYA V, et al. Velocity and flame wrinkling characteristics of a transversely forced, bluff-body stabilized flame, part I: Experiments and data analysis[J]. Combustion Science and Technology, 2013, 185(7): 1056-1076. |
35 | BLOXSIDGE G J, DOWLING A P, LANGHORNE P J. Reheat buzz: An acoustically coupled combustion instability. Part 2. Theory[J]. Journal of Fluid Mechanics, 1988, 193: 445-473. |
36 | ACHARYA V, EMERSON B, MONDRAGON U, et al. Velocity and flame wrinkling characteristics of a transversely forced, bluff-body stabilized flame, part II: flame response modeling and comparison with measurements[J]. Combustion Science and Technology, 2013, 185(7): 1077-1097. |
37 | 张弛, 林宇震, 徐华胜, 等. 民用航空发动机低排放燃烧室技术发展现状及水平[J]. 航空学报, 2014, 35(2): 332-350. |
ZHANG C, LIN Y Z, XU H S, et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 332-350 (in Chinese). | |
38 | HUANG Y, YANG V. Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Progress in Energy and Combustion Science, 2009, 35(4): 293-364. |
39 | LUCCA-NEGRO O, O'DOHERTY T. Vortex breakdown: a review[J]. Progress in Energy and Combustion Science, 2001, 27(4): 431-481. |
40 | SYRED N. A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems[J]. Progress in Energy and Combustion Science, 2006, 32(2): 93-161. |
41 | PASCHEREIT C O, SCHUERMANS B, POLIFKE W, et al. Measurement of transfer matrices and source terms of premixed flames[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(2): 239-247. |
42 | CANDEL S, DUROX D, SCHULLER T, et al. Dynamics of swirling flames[J]. Annual Review of Fluid Mechanics, 2014, 46: 147-173. |
43 | CANDEL S, DUROX D, SCHULLER T, et al. Progress and challenges in swirling flame dynamics[J]. Comptes Rendus Mécanique, 2012, 340(11-12): 758-768. |
44 | PALIES P, DUROX D, SCHULLER T, et al. The combined dynamics of swirler and turbulent premixed swirling flames[J]. Combustion and Flame, 2010, 157(9): 1698-1717. |
45 | CUMPSTY N A, MARBLE F E. The interaction of entropy fluctuations with turbine blade rows; a mechanism of turbojet engine noise[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1977, 357(1690): 323-344. |
46 | DOWLING A P. Nonlinear self-excited oscillations of a ducted flame[J]. Journal of Fluid Mechanics, 1997, 346: 271-290. |
47 | NOIRAY N, DUROX D, SCHULLER T, et al. A unified framework for nonlinear combustion instability analysis based on the flame describing function[J]. Journal of Fluid Mechanics, 2008, 615: 139-167. |
48 | FANACA D, ALEMELA P R, HIRSCH C, et al. Comparison of the flow field of a swirl stabilized premixed burner in an annular and a single burner combustion chamber[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(7): 071502. |
49 | RAJENDRAM SOUNDARARAJAN P, DUROX D, VIGNAT G, et al. Comparison of flame describing functions measured in single and multiple injector configurations[J]. Journal of Engineering for Gas Turbines and Power, 2022, 144(11): 111023. |
50 | SMITH T E, CHTEREV I P, EMERSON B L, et al. Comparison of single- and multinozzle reacting swirl flow dynamics[J]. Journal of Propulsion and Power, 2018, 34(2): 384-394. |
51 | ZHENG J Y, LI L, WANG G Q, et al. The response of a conical flame to a dual-frequency excitation[C]∥ INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2023. |
52 | JIANG X Z, LI J X, YANG L J, et al. A nonlinearly kinematic model of the asymmetrically turbulent premixed slit flame subjected to two-way harmonic disturbances[J]. Combustion and Flame, 2022, 240: 112021. |
53 | WANG X Y, HECKL M. 3-D thermoacoustic instability analysis based on Green’s function approach[J]. Journal of Sound and Vibration, 2022, 537: 116816. |
54 | RAJENDRAM SOUNDARARAJAN P, VIGNAT G, DUROX D, et al. Do flame describing functions suitably represent combustion dynamics under self-sustained oscillations?[J]. Journal of Sound and Vibration, 2022, 534: 117034. |
55 | WOLF P, BALAKRISHNAN R, STAFFELBACH G, et al. Using LES to study reacting flows and instabilities in annular combustion chambers[J]. Flow, Turbulence and Combustion, 2012, 88(1): 191-206. |
56 | CHEN Z X, SWAMINATHAN N, MAZUR M, et al. Numerical investigation of azimuthal thermoacoustic instability in a gas turbine model combustor[J]. Fuel, 2023, 339: 127405. |
57 | DOWLING A P, STOW S R. Acoustic analysis of gas turbine combustors[J]. Journal of Propulsion and Power, 2003, 19(5): 751-764. |
58 | STOW S R, DOWLING A P. A time-domain network model for nonlinear thermoacoustic oscillations[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(3): 031502. |
59 | 孙晓峰, 董旭, 张光宇, 等. 特征值理论在稳定性预测中的应用研究进展[J]. 航空学报, 2022, 43(10): 527408. |
SUN X F, DONG X, ZHANG G Y, et al. Progress review of application of eigenvalue theory to stability prediction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527408 (in Chinese). | |
60 | DOWLING A P. The calculation of thermoacoustic oscillations[J]. Journal of Sound and Vibration, 1995, 180(4): 557-581. |
61 | XU L L, ZHENG J Y, WANG G Q, et al. Investigation on the intrinsic thermoacoustic instability of a lean-premixed swirl combustor with an acoustic liner[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6095-6103. |
62 | STOW S R, DOWLING A P. Thermoacoustic oscillations in an annular combustor[C]∥Turbo Expo: Power for Land, Sea, and Air. New York: ASME, 2001. |
63 | LI L, SUN X F. Effect of vorticity waves on azimuthal instabilities in annular chambers[J]. Combustion and Flame, 2015, 162(3): 628-641. |
64 | LI L. Mode coupling due to the non-uniformly distributed heat release in combustion instabilities[J]. Journal of Sound and Vibration, 2018, 429: 206-223. |
65 | YANG D, MORGANS A S. Low-order network modeling for annular combustors exhibiting longitudinal and circumferential modes[C]∥ Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. New York: ASME, 2018. |
66 | BELLUCCI V, FLOHR P, PASCHEREIT C O, et al. On the use of Helmholtz resonators for damping acoustic pulsations in industrial gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(2): 271-275. |
67 | PARMENTIER J F, SALAS P, WOLF P, et al. A simple analytical model to study and control azimuthal instabilities in annular combustion chambers[J]. Combustion and Flame, 2012, 159(7): 2374-2387. |
68 | LI L, GUO Z H, ZHANG C Y, et al. A passive method to control combustion instabilities with perforated liner[J]. Chinese Journal of Aeronautics, 2010, 23(6): 623-630. |
69 | YOU D, YANG V, SUN X F. Three-dimensional linear stability analysis of gas turbine combustion dynamics[M]∥ LIEUWEN T C, YANG V. Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling. Reston: AIAA, 2006: 415-443. |
70 | ZHANG G Y, ZHANG X X, WANG X Y, et al. Modeling analysis of combustion instability in an annular combustor equipped with circumferentially segmented perforated liner[J]. Journal of Sound and Vibration, 2023, 549: 117573. |
71 | SUN X F, WANG X Y, DU L, et al. A new model for the prediction of turbofan noise with the effect of locally and non-locally reacting liners[J]. Journal of Sound and Vibration, 2008, 316(1-5): 50-68. |
72 | ZHANG G Y, WANG X Y, LI L, et al. Control of thermoacoustic instability with a drum-like silencer[J]. Journal of Sound and Vibration, 2017, 406: 253-276. |
73 | QIN L, WANG X Y, ZHANG G Y, et al. Effect of nonlinear flame response on the design of perforated liners in suppression of combustion instability[J]. Journal of Sound and Vibration, 2021, 511: 116314. |
74 | ZHANG G Y, WANG X Y, LI L, et al. Effects of perforated liners on controlling combustion instabilities in annular combustors[J]. AIAA Journal, 2020, 58(7): 3100-3114. |
75 | SUN X, JING X, ZHANG H, et al. Effect of grazing-bias flow interaction on acoustic impedance of perforated plates[J]. Journal of Sound and Vibration, 2002, 254(3): 557-573. |
76 | JING X D, SUN X F. Experimental investigations of perforated liners with bias flow[J]. The Journal of the Acoustical Society of America, 1999, 106(5): 2436-2441. |
77 | JING X D, SUN X F. Effect of plate thickness on impedance of perforated plates with bias flow[J]. AIAA Journal, 2000, 38(9): 1573-1578. |
78 | DAI W, WANG X L, WANG X Y, et al. Acoustic scattering mechanism and noise attenuation of circumferentially non-uniform liner with spectral-wave guide method [J/OL]. Chinese Journal of Aeronautics, (2023-05-31) [2023-06-25]. . |
79 | QIN L, WANG X Y, ZHANG G Y, et al. Control of azimuthal combustion instability through the injector mounting surface of annular combustors [J/OL]. AIAA Journal, (2023-06-23) [2023-06-25]. . |
[1] | 廖峻锋, 景晓东, 邱祥海, 翟勇磊, 岳喜山, 马双超, 杜林, 孙晓峰. 新型航空金属丝网声衬掠流特性实验研究[J]. 航空学报, 2023, 44(21): 528537-528537. |
[2] | 田珊珊, 金亮, 杜兆波, 钟翔宇, 黄伟, 刘远洋. 基于鼓包的激波/边界层干扰控制研究进展[J]. 航空学报, 2023, 44(18): 28411-028411. |
[3] | 汪广旭, 谭永华, 庄逢辰, 陈建华, 杨宝娥, 洪流. 喷注流强分布对高频纵向燃烧不稳定性抑制效果[J]. 航空学报, 2022, 43(9): 126018-126018. |
[4] | 王方, 王煜栋, 姜胜利, 陈军, 唐军, 徐华胜, 李象远, 邢竞文, 高东硕, 金捷. AECSC-JASMIN湍流燃烧仿真软件研发和检验[J]. 航空学报, 2021, 42(12): 625003-625003. |
[5] | 侯宇飞, 李志平. 仿生正弦前缘对翼面动态失速的影响[J]. 航空学报, 2020, 41(1): 123276-123276. |
[6] | 张伟光, 王晓宇, 孙晓峰. 叶片弯掠组合设计对风扇气动噪声的被动控制[J]. 航空学报, 2017, 38(2): 120265-120273. |
[7] | 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7): 2065-2090. |
[8] | 李伟;乔渭阳;许开富;罗华玲. 一种改进的轴流涡轮叶尖对泄漏流影响的数值研究[J]. 航空学报, 2008, 29(5): 1125-1132. |
[9] | 景晓东;孙晓峰. 穿孔板切向流效应的理论和实验研究[J]. 航空学报, 2002, 23(5): 405-410. |
[10] | 赵文涛;周进;聂万胜;庄逢辰. 湍流两相燃烧不稳定性分析[J]. 航空学报, 1998, 19(1): 13-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学