[1] WEBER H E. Shock wave engine design[M]. New York:John Wiley & Sons, Inc, 1995:1-4.
[2] DEMPSEY E, MULLER N, AKBARI P, et al. Performance optimization of gas turbines utilizing four-port wave rotors:AIAA-2006-4152[R]. Reston:AIAA, 2006.
[3] AKBARI P, KHARAZI A A, MULLER N. Utilizing wave rotor technology to enhance the turbo compression in power and refrigeration cycles:IMECE-2003-44222[R]. New York:ASME, 2003.
[4] AKBARI P, NALIM R, MULLER N. A review of wave rotor technology and its applications:IMECE-2004-60082[R]. New York:ASME, 2004.
[5] KENTFIELD J A C. Nonsteady, one-dimensional, internal, compressible flows:theory and applications[M]. Oxford:Oxford University Press, 1993:127-128.
[6] WILSON J. An experimental determination of losses in a three-port wave rotor[J]. Journal of Engineering for Gas Turbines and Power, 1998, 120(4):833-842.
[7] PAXSON D E. Comparison between numerically modeled and experimentally measured wave-rotor loss mechanisms[J]. Journal of Propulsion and Power, 1995, 11(5):908-914.
[8] AKBARI P, NALIM M R. Leakage assessment of pressure-exchange wave rotors[J]. Journal of Propulsion and Power, 2008, 24(4):732-740.
[9] WILSON J, WELCH G E, PAXSON D E. Experimental results of performance tests on a four-port wave rotor:AIAA-2007-1250[R]. Reston:AIAA, 2007.
[10] ELEUTERIO F T. Riemann solvers and numerical methods for fluid dynamics[M]. Heidelberg:Springer, 2009:115-119.
[11] GLASS I I, PATTERSON G N. A theoretical and experimental study of shock-tube flows[J]. Journal of the Aeronautical Sciences, 1955, 22(2):73-100.
[12] ZHANG G, SETOGUCHI T, KIM H D. Numerical simulation of flow characteristics in micro shock tubes[J]. Journal of Thermal Science, 2015, 24(3):246-253.
[13] OKAMOTO K, NAGASHIMA T. Visualization of wave rotor inner flow dynamics[J]. Journal of Propulsion and Power, 2007, 23(2):292-300.
[14] ZHANG G, KIM H D. Numerical simulation of shock wave and contact surface propagation in micro shock tubes[J]. Journal of Mechanical Science and Technology, 2015, 29(4):1689-1696.
[15] 阎超. 计算流体力学方法及应用[M]. 北京:北京航空航天大学出版社, 2006:171. YAN C. Methods and applications of computational fluid dynamics[M]. Beijing:Beihang University Press, 2006:171 (in Chinese).
[16] SAITO T, TAKAYAMA K. Numerical simulations of nozzle starting process[J]. Shock Waves, 1999, 9(2):73-79.
[17] DESHPANDE A, PURANIK B. Effect of viscosity and wall heat conduction on shock attenuation in narrow channels[J]. Shock Waves, 2015, 25(1):1-11.
[18] SKEWS B W. The perturbed region behind a diffracting shock wave[J]. Journal of Fluid Mechanics, 1967, 29(4):705-719.
[19] TAKAWAMA K, INOUE O. Shock wave diffraction over a 90 degree sharp corner-posters presented at 18th ISSW[J]. Shock Waves, 1991, 1(4):301-312.
[20] IGRA O, FALCOVITZ J, REICHENBACH H, et al. Experimental and numerical study of the interaction between a planar shock wave and a square cavity[J]. Journal of Fluid Mechanics, 1996, 313:105-130. |