收稿日期:
2023-07-19
修回日期:
2023-08-07
接受日期:
2023-09-07
出版日期:
2023-11-15
发布日期:
2023-09-15
通讯作者:
邹正平
E-mail:zouzhengping@buaa.edu.cn
基金资助:
Yifan WANG1, Zhengping ZOU1,2(), Maozhang CHEN2,3
Received:
2023-07-19
Revised:
2023-08-07
Accepted:
2023-09-07
Online:
2023-11-15
Published:
2023-09-15
Contact:
Zhengping ZOU
E-mail:zouzhengping@buaa.edu.cn
Supported by:
摘要:
先进动力系统是水平起降、可重复使用高超声速飞行器的核心支撑,其中,高超声速强预冷发动机是一种极具潜力的动力方案,近年来受到广泛关注。深入研究强预冷发动机的热力循环,掌握发动机热力循环工作特性对发动机的方案设计至关重要。本文对近年来国内外在高超声速强预冷发动机热力循环方面的研究进展进行了综述,主要包括发动机热力循环建模分析方法、性能分析手段、典型强预冷发动机热力循环方案研究等。其中,根据热力循环方案的显著差异,分别介绍了开式直接预冷循环及中间介质闭式预冷热力循环。已有研究表明,对于开式直接预冷循环,燃料类型是决定其性能的根本,提升燃料的热沉是提升发动机性能的重要途径。对于中间介质闭式预冷热力循环,发动机的比冲、单位推力等性能与闭式循环系统的复杂性存在一定的矛盾。整体来看,需继续开展高超声速强预冷发动机核心部件的研究,提炼更加准确的部件性能模型,完善部件尺寸、重量等估算模型,实现对于发动机比冲、单位推力、推重比等整机性能参数的准确评估,支撑高可行性的高超声速强预冷发动机热力方案设计。
中图分类号:
王一帆, 邹正平, 陈懋章. 高超声速强预冷发动机热力循环研究进展[J]. 航空学报, 2023, 44(21): 529343-529343.
Yifan WANG, Zhengping ZOU, Maozhang CHEN. Progress in thermodynamic cycle research of hypersonic precooled engine[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 529343-529343.
表 1
BH⁃MCESP燃气物性计算结果对比
压力/MPa | 温度/K | 当量比 | BH-MCESP计算结果 | CEA计算结果 | 密度误差/ % | 定压比热误差/ % | ||
---|---|---|---|---|---|---|---|---|
密度/ (kg·m-3) | 定压比热/ (kJ·kg-1·K-1) | 密度/ (kg·m-3) | 定压比热/ (kJ·kg-1·K-1) | |||||
1.0 | 1 000 | 0.4 | 3.25 | 1.26 | 3.25 | 1.26 | 0 | -0.09 |
2 000 | 0.4 | 1.63 | 1.42 | 1.63 | 1.42 | 0.01 | -0.25 | |
1 000 | 0.8 | 3.05 | 1.39 | 3.05 | 1.38 | 0 | -0.10 | |
2 000 | 0.8 | 1.53 | 1.59 | 1.53 | 1.59 | 0.01 | -0.45 | |
1 000 | 1.2 | 2.79 | 1.52 | 2.79 | 1.52 | 0 | -0.12 | |
2 000 | 1.2 | 1.39 | 1.76 | 1.39 | 1.75 | 0 | -0.50 |
表 2
常用部件建模方法[53]
部件 | “零维”控制方程 |
---|---|
进气道 ( | |
换热器 ( 下标 | |
压气机(无引气) ( | |
涡轮(无冷却) ( | |
燃烧室 (下标f-燃料; | |
分流部件(两分流为例) ( | |
汇流部件(两汇流为例) ( | |
尾喷管(收扩临界为例,一般以冻结流动计算) ( | |
节流部件 ( |
表 3
常用燃料及冷却剂工质物性[71]
工质类型 | 氢 | 甲烷 | 乙醇 | 煤油 | 氦 | 氮 | 二氧化碳 | 水 |
---|---|---|---|---|---|---|---|---|
热值/(MJ·kg-1) | 118.4 | 49.7 | 26.8 | 43.1 | ||||
定压比热/(J·kg-1·K-1) | 14 540 | 2 950 | 3 121 | 2 000 | 5 192 | 1 069 | 1 058 | 4 658 |
气体常数/(J·kg-1·K-1) | 4 122 | 519 | 181 | 46 | 2 078 | 297 | 189 | 462 |
比热比 | 1.398 | 1.234 | 1.130 | 1.664 | 1.406 | 1.265 | 1.431 | |
导热系数/(W·m-1·K-1) | 0.223 5 | 0.068 3 | 0.148 2 | 0.150 0 | 0.221 9 | 0.039 4 | 0.034 0 | 0.642 7 |
动力黏度(μPa·s) | 10.5 | 17.2 | 395.8 | 2 400 | 28.4 | 26.1 | 23.8 | 117.3 |
存储温度(K) | 20 | 112 | 288 | 288 | 4 | 77 | 288 | 288 |
存储密度/(kg·m-3) | 71 | 415 | 729 | 820 | 124 | 806 | 802 | 997 |
表 4
早期直接预冷热力循环方案
发动机 方案 | 研制国家 | 工作范围、性能及应用对象 | 典型技术特征 |
---|---|---|---|
LACE | 德国 | 1) 吸气模态Ma=0~7、比冲800 s;火箭模态Ma≥7。 2) 适用于SSTO飞行器。 | 1) 采用液氢作为冷源。 2) 将空气冷却至露点温度(81.7 K)以下,预冷器存在“夹点”问题,燃料消耗量大,导致比冲低。 3) 吸气模态与火箭模态共用燃烧室和喷管。 |
RB545 | 英国 | 1) 吸气模态Ma=0~5,火箭模态Ma≥5。 2) 发动机起飞推力367 kN,海平面比冲2 000 s。 3) 适用于单级入轨飞行器HOTOL。 | 1) 采用液氢作为冷源;部分氢气驱动涡轮。 2)压气机入口温度冷却至高于露点温度,空气压气机压比约150。 3) 预冷器面临氢脆及结冰问题。 4) 吸气模态与火箭模态共用燃烧室和喷管。 |
ATRDC | 俄罗斯 | 1) 吸气模态Ma=0~6,火箭模态Ma≥6。 2) 不带冲压通道,平均比冲2 500 s;在Ma≥2耦合冲压通道,平均比冲约4 000 s。 3) 推重比18~20。 | 1) 采用液氢冷却空气;部分氢气驱动涡轮。 2) 液氢冷却当量比约2.0。 3) 压气机入口温度98~112 K,空气压气机的压比20~40。 4) 预冷器约占整机质量40%。 5) 吸气式燃烧室和火箭燃烧室独立。 |
KLIN | 美国 | 1) 吸气模态Ma=0~6,火箭模态Ma≥6。 2) 适用于SSTO或TSTO第1级。 3) 比冲比氢氧火箭发动机最大可提高60%。 4) 推重比33。 | 1) 火箭和深度预冷涡喷发动机热力耦合。 2) 在地面空气压气机入口常温空气被冷却至110 K,压气机压比约30;在Ma=6时被冷却至200~250 K。 3) 喷注液氧防止预冷器结冰。 |
表 5
SABRE⁃3热力参数方案
热力方案来源 | 循环特征 | 性能指标 |
---|---|---|
英国REL公司[ | 1) Ma=5深冷空气压气机进口约120 K。 2) 空气压气机压比约140。 3) 火箭燃烧室与吸气模态燃烧室共用。 4) 高推重比。 | 1) Ma=5比冲1 634 s。 2) Ma=5单位推力约1.24 kN/(kg·s-1)。 |
北京动力机械研究所陈操斌等[ | 1) 基于现有部件技术水平。 2) 适度预冷,Ma=5空气压气机进口301 K。 | 1) Ma=5比冲1 359 s。 2) Ma=5单位推力1.14 kN/(kg·s-1)。 |
国防科技大学Zhang等[ | 1) 基于超临界氦再循环的改进SABRE-3方案。 | 1) Ma=4.86比冲约2 452 s。 |
1 | 张灿, 王轶鹏, 叶蕾. 国外近十年高超声速飞行器技术发展综述[J]. 战术导弹技术, 2020(6): 81-86. |
ZHANG C, WANG Y P, YE L. Summary of the technological development of overseas hypersonics in the past ten years[J]. Tactical Missile Technology, 2020(6): 81-86 (in Chinese). | |
2 | 廖孟豪, 李宪开, 窦相民. 美国高超声速作战飞机气动布局演化分析[J]. 航空科学技术, 2020, 31(11): 3-6. |
LIAO M H, LI X K, DOU X M. Evolution analysis of aerodynamic configuration of hypersonic military aircraft in USA[J]. Aeronautical Science & Technology, 2020, 31(11): 3-6 (in Chinese). | |
3 | 乐嘉陵. 高超声速技术及其在军事上的应用[J]. 现代军事, 2000(6): 10-12, 8. |
LE J L. Hypersonic technology and its application in military affairs[J]. Conmilit, 2000(6): 10-12, 8 (in Chinese). | |
4 | 魏毅寅. 组合动力空天飞行若干科技关键问题[J]. 空天技术, 2022(1): 1-12. |
WEI Y Y. Major technological issues of aerospace vehicle with combined-cycle propulsion[J]. Aerospace Technology, 2022(1): 1-12 (in Chinese). | |
5 | 凌文辉, 侯金丽, 韦宝禧, 等. 空天组合动力技术挑战及解决途径的思考[J]. 推进技术, 2018, 39(10): 2171-2176. |
LING W H, HOU J L, WEI B X, et al. Technical challenge and potential solution for aerospace combined cycle engine[J]. Journal of Propulsion Technology, 2018, 39(10): 2171-2176 (in Chinese). | |
6 | 王振国, 梁剑寒, 丁猛, 等. 高超声速飞行器动力系统研究进展[J]. 力学进展, 2009, 39(6): 716-739. |
WANG Z G, LIANG J H, DING M, et al. A review on hypersonic airbreathing propulsion system[J]. Advances in Mechanics, 2009, 39(6): 716-739 (in Chinese). | |
7 | 李应红. 中国高超声速航空发动机2035发展战略[M]. 北京: 科学出版社, 2023: 209-215. |
LI Y H. 2035 development strategy for hypersonic aero-engine in China[M]. Beijing: Science Press, 2023: 209-215 (in Chinese). | |
8 | 尹泽勇, 蔚夺魁, 徐雪. 高马赫数涡轮基推进系统的发展及挑战[J]. 航空发动机, 2021, 47(4): 1-7. |
YIN Z Y, YU D K, XU X. Development trend and technical challenge of high Mach number turbine based propulsion system[J]. Aeroengine, 2021, 47(4): 1-7 (in Chinese). | |
9 | 邹正平, 刘火星, 唐海龙, 等. 高超声速航空发动机强预冷技术研究[J]. 航空学报, 2015, 36(8): 2544-2562. |
ZOU Z P, LIU H X, TANG H L, et al. Precooling technology study of hypersonic aeroengine[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2544-2562 (in Chinese). | |
10 | DAI J, ZUO Q R. Key technologies for thermodynamic cycle of precooled engines: A review[J]. Acta Astronautica, 2020, 177: 299-312. |
11 | MEHTA U, BOWLES J, MELTON J, et al. Water injection pre-compressor cooling assist space access[C]∥ Proceedings of the 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2012. |
12 | 芮长胜, 张超, 越冬峰. 射流预冷涡轮发动机技术研究及发展[J]. 航空科学技术, 2015, 26(10): 53-59. |
RUI C S, ZHANG C, YUE D F. Technical study and development of mass injecting pre-compressor cooling turbine engine[J]. Aeronautical Science & Technology, 2015, 26(10): 53-59 (in Chinese). | |
13 | 尚守堂, 田方超, 扈鹏飞. 涡轮发动机射流预冷关键技术分析[J]. 航空科学技术, 2018, 29(1): 1-3. |
SHANG S T, TIAN F C, HU P F. Key technology analysis of mass injecting pre-compressor cooling turbine engine[J]. Aeronautical Science & Technology, 2018, 29(1): 1-3 (in Chinese). | |
14 | BUILDER C H. Liquid air jet propulsion engine and method of operating same: USD3452541[P]. 1961-02-09. |
15 | HEMPSELL M. HOTOL’s secret engines revealed[J]. Spaceflight, 1993, 35(5): 168-172. |
16 | BALEPIN V, CIPRIANO J, BERTHUS M. Combined propulsion for SSTO rocket - From conceptual study to demonstrator of deep cooled turbojet[C]∥ Proceedings of the Space Plane and Hypersonic Systems and Technology Conference. Reston: AIAA, 1996. |
17 | BALEPIN V. Rocket engine: US6769242B1[P]. 2001-11-21. |
18 | TANATUSGU N, SATO T, NARUO Y, et al. Development study on ATREX engine[J]. Acta Astronautica, 1997, 40(2-8): 165-170. |
19 | SATO T, TAGUCHI H, KOBAYASHI H, et al. Development study of a precooled turbojet engine[J]. Acta Astronautica, 2010, 66(7-8): 1169-1176. |
20 | TANATSUGU N, NARUO Y, ROKUTANDA I. Test results of the air turbo ramjet for a future space plane[J]. Acta Astronautica, 1994, 32(12): 785-796. |
21 | KOJIMA T, KOBAYASHI H, TAGUCHI H, et al. Design study of hypersonic components for precooled turbojet engine[C]∥ 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
22 | SATO T, TAGUCHI H, KOBAYASHI H, et al. Development study of a precooled turbojet engine for flight demonstration [C]∥ Proceedings of the Korean Society of Propulsion Engineers Conference. 2008: 109-114. |
23 | TAGUCHI H, HARADA K, KOBAYASHI H, et al. Mach 4 wind tunnel experiment of hypersonic pre-cooled turbojet engine[C]∥ Proceedings of the 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2014. |
24 | HEMPSELL M. Progress on the SKYLON and SABRE [C]∥ Proceedings of the International Astronautical Congress. 2013, 11: 8427-8440. |
25 | BARTHA J, WEBBER H. SABRE technology development[C]∥ 67th International Astronautical Congress. 2016. |
26 | STEELANT J. Sustained hypersonic flight in Europe: Technology drivers for LAPCAT II[C]∥ Proceedings of the 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2009. |
27 | VARVILL R, DURAN I, KIRK A, et al. Sabre technology development: Status and update [C]∥ 8th European Conference for Aeronautics and Space Sciences (EUCASS). 2019. |
28 | CHEN Y M, ZOU Z P, LIU H X, et al. Verification at Mach 4 heat conditions of an annular microtube-typed precooler for hypersonic precooled engines[J]. Applied Thermal Engineering, 2022, 201: 117742. |
29 | WANG C S, ERI Q T, WANG Y, et al. Multi-objective aerodynamic optimization of an axisymmetric variable-geometry inlet with a Mach 5 design point[J]. Aerospace Science and Technology, 2023, 136: 108189. |
30 | WANG C S, ERI Q T, WANG Y, et al. Flow and heat transfer characteristics of intake-precooler system for hypersonic precooled aero-engine[J]. Applied Thermal Engineering, 2023, 229: 120596. |
31 | WANG Y, LIN Y Z, ERI Q T, et al. Flow and thrust characteristics of an expansion-deflection dual-bell nozzle[J]. Aerospace Science and Technology, 2022, 123: 107464. |
32 | BAI N, FAN W, ZHANG R. A mixing enhancement mechanism for a hydrogen transverse jet coupled with a shear layer for gas turbine combustion[J]. Physics of Fluids, 2023, 35(4): 045111. |
33 | 玉选斐. 预冷吸气式组合推进系统热力循环及控制规律研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
YU X F. Research on thermodynamic cycle and control law of precooled airbreathing propulsion system[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese). | |
34 | 廉筱纯, 吴虎. 航空发动机原理[M]. 西安: 西北工业大学出版社, 2005: 1-27. |
LIAN X C, WU H. Aeroengine principle[M]. Xi'an: Northwestern Polytechnical University Press, 2005: 1-27 (in Chinese). | |
35 | WEBBER H, FEAST S, BOND A. Heat exchanger design in combined cycle engines[J]. Journal of the British Interplanetary Society, 2009, 62(4): 122-130. |
36 | YU X F, WANG C, YU D R. Thermodynamic assessment on performance extremes of the fuel indirect precooled cycle for hypersonic airbreathing propulsion[J]. Energy, 2019, 186: 115772. |
37 | DONG P C, TANG H L, CHEN M. Study on multi-cycle coupling mechanism of hypersonic precooled combined cycle engine[J]. Applied Thermal Engineering, 2018, 131: 497-506. |
38 | VARVILL R, BOND A. A comparison of propulsion concepts for SSTO reusable launchers[J]. Journal of the British Interplanetary Society, 2003, 56(3-4):108-117. |
39 | BALLAND S, FERNANDEZ VILLACE V, STEELANT J. Thermal and energy management for hypersonic cruise vehicles-cycle analysis[C]∥ Proceedings of the 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2015. |
40 | ALEXIOU A. Introduction to gas turbine modelling with PROOSIS-First edition[M]. Madrid: Empresarios Agrupados Internacional, 2011. |
41 | LEMMON E, HUBER M, MCLINDEN M. NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, Version 9.1 [S]. Gaithersburg: NIST, 2013. |
42 | WANG H Y, YANG Z N, LIU J, et al. Activating ABO3-type coating by additive for coke inhibition in supercritical thermal cracking of endothermic hydrocarbon fuel[J]. Fuel Processing Technology, 2020, 198: 106229. |
43 | 董飞. 十氢萘超临界裂解脱氢的研究[D]. 天津: 天津大学, 2003. |
DONG F. Study on supercritical pyrolysis and dehydrogenation of decalin[D]. Tianjin: Tianjin University, 2003 (in Chinese). | |
44 | ZHOU H, GAO X K, LIU P H, et al. Energy absorption and reaction mechanism for thermal pyrolysis of n-decane under supercritical pressure[J]. Applied Thermal Engineering, 2017, 112: 403-412. |
45 | HUBER M L. NIST thermophysical properties of hydrocarbon mixtures database (SUPERSTRAPP)–Version 3.2[M]. Gaithersburg: NIST, 2007. |
46 | KEE R J, RUPLEY F M, MEEKS E, et al. CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics: SAND. 96-8216 [R]. Livermore: Sandia National Lab, 1996. |
47 | GOODWIN D G. Cantera C++ user’s guide[M]. California: California Institute of Technology, 2002: 32. |
48 | 李宜敏. 固体火箭发动机原理[M]. 北京: 国防工业出版社, 1985: 69-75. |
LI Y M. Principle of solid rocket engine[M]. Beijing: National Defense Industry Press, 1985: 69-75 (in Chinese). | |
49 | 范作民, 傅巽权. 热力过程计算与燃气表-下卷 [M]. 北京: 国防工业出版社, 1987: 125-134. |
FAN Z M, FU X Q. Thermal process calculation and gas meter-Volume II[M]. Beijing: National Defense Industry Press, 1987: 125-134 (in Chinese). | |
50 | MCBRIDE B J. Computer program for calculation of complex chemical equilibrium compositions and applications[M]. Cleveland: NASA Lewis Research Center, 1996: 1-3. |
51 | 黄晨. 膨胀式空气涡轮冲压发动机部件匹配及性能优化研究[D]. 北京: 中国科学院工程热物理研究所, 2018. |
HUANG C. Research on air turbo ramjet expander engine component matching and performance optimization[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2018 (in Chinese). | |
52 | 邹正平, 王一帆, 姚李超, 等. 超临界二氧化碳闭式布莱顿循环系统研究进展[J]. 北京航空航天大学学报, 2022, 48(9): 1643-1677. |
ZOU Z P, WANG Y F, YAO L C, et al. Progress in research of closed supercritical carbon dioxide Brayton cycle system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1643-1677 (in Chinese). | |
53 | 王一帆. 高超声速预冷发动机数学模型及多构型热力循环性能研究[D]. 北京: 北京航空航天大学, 2022. |
WANG Y F. Modeling method and thermodynamic analysis of multi-layout airbreathing precooled engine[D]. Beijing: Beihang University, 2022 (in Chinese). | |
54 | 邹正平, 王一帆, 额日其太, 等. 高超声速强预冷航空发动机技术研究进展[J]. 航空发动机, 2021, 47(4): 8-21. |
ZOU Z P, WANG Y F, ERI Q T, et al. Research progress on hypersonic precooled airbreathing engine technology[J]. Aeroengine, 2021, 47(4): 8-21 (in Chinese). | |
55 | GAO J H, HUANG Y Y. Modeling and simulation of an aero turbojet engine with GasTurb[C]∥ 2011 International Conference on Intelligence Science and Information Engineering. Piscataway: IEEE Press, 2011: 295-298. |
56 | XU P C, ZOU Z P, YAO L C. A unified performance conversion method for similar compressors working with different gases based on polytropic analysis and deep-learning improvement[J]. Energy Conversion and Management, 2021, 247: 114747. |
57 | 张建强. 组合发动机预冷器微小管道内低温工质流动传热机理研究[D]. 长沙: 国防科技大学, 2018. |
ZHANG J Q. Research on the flow and heat transfer mechanism of cryogenic fluid in the micro/mini-channel of combined cycle engine precooler[D]. Changsha: National University of Defense Technology, 2018 (in Chinese). | |
58 | HOOPES K, SÁNCHEZ D, CRESPI F. A new method for modelling off-design performance of sCO2 heat exchangers without specifying detailed geometry[C]∥ Fifth Supercritical CO2 Power Cycles Symposium. 2016. |
59 | 邹正平, 王一帆, 杜鹏程, 等. 强预冷发动机新型热力循环布局及性能分析[J]. 火箭推进, 2021, 47(6): 62-75. |
ZOU Z P, WANG Y F, DU P C, et al. Thermodynamic performance analysis of anovel precooled airbreathing engine layout[J]. Journal of Rocket Propulsion, 2021, 47(6): 62-75 (in Chinese). | |
60 | ZOU Z P, WANG Y F, DU P C, et al. A novel simplified precooled airbreathing engine cycle: Thermodynamic performance and control law[J]. Energy Conversion and Management, 2022, 258: 115472. |
61 | GALLIMORE S J. Axial flow compressor design[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1999, 213(5): 437-449. |
62 | CHURCHILL S W. Friction-factor equation spans all fluid-flow regimes[J]. Chemical Engineering (New York), 1977, 84(24): 91-92. |
63 | LI H, ZOU Z P, LIU Y M. A refined design method for precoolers with consideration of multi-parameter variations based on low-dimensional analysis[J]. Chinese Journal of Aeronautics, 2022, 35(3): 329-344. |
64 | 丁超. 非燃气介质涡轮气动设计方法[D]. 北京: 北京航空航天大学, 2019. |
DING C. Aerodynamic design method of turbine with unconventional medium[D]. Beijing: Beihang University, 2019 (in Chinese). | |
65 | ZOU Z P, WANG Y F, LI H, et al. Thermal-hydraulic characteristics of a PCHE with zigzag microchannel for hypersonic precooled aero-engines: An experimental study[J]. Experimental Heat Transfer, 2022: 1-22. |
66 | 张国瑞. 行星传动技术[M]. 上海: 上海交通大学出版社, 1989: 6-124. |
ZHANF G R. Planetary transmission technology[M]. Shanghai: Shanghai Jiao Tong University Press, 1989: 6-124 (in Chinese). | |
67 | FERNANDEZ-VILLACE V, PANIAGUA G. Numerical model of a variable-combined-cycle engine for dual subsonic and supersonic cruise[J]. Energies, 2013, 6(2): 839-870. |
68 | YU X F, WANG C, YU D R. Precooler-design & engine-performance conjugated optimization for fuel direct precooled airbreathing propulsion[J]. Energy, 2019, 170: 546-556. |
69 | WEI X, JIN F, JI H H, et al. Thermodynamic analysis of key parameters on the performance of air breathing pre-cooled engine[J]. Applied Thermal Engineering, 2022, 201: 117733. |
70 | MATTINGLY J D, HEISER W H, PRATT D T. Aircraft engine design [M]. 2nd ed. Reston: AIAA, 2002. |
71 | KOBAYASHI H, TAGUCHI H, KOJIMA T, et al. Performance analysis of Mach 5 hypersonic turbojet developed in JAXA[C]∥ Proceedings of the 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2012. |
72 | VARVILL R. Heat exchanger development at reaction engines ltd[J]. Acta Astronautica, 2010, 66(9-10): 1468-1474. |
73 | 陈操斌, 刘国栋, 杜鹏程, 等. 碳氢燃料直接预冷发动机性能方案对比研究[C]∥第六届空天动力联合会议暨中国航天第三专业信息网第四十二届技术交流会暨 2021 航空发动机技术发展高层论坛论文集 (第三册). 2022. |
CHEN C B, LIU G D, DU P C, et al. Comparative study on performance schemes of hydrocarbon fuel direct precooling engine[C]∥ The 6th Aerospace Power Joint Conference and the 42nd Technology Exchange Conference of the 3rd Professional Information Network of China Aerospace and the 2021 High Level Forum on Aeroengine Technology Development (Volume III). 2022 (in Chinese). | |
74 | LI Y, JIN B T, ZHANG X W, et al. Pyrolysis and heat sink of an endothermic hydrocarbon fuel EHF-851[J]. Journal of Analytical and Applied Pyrolysis, 2021, 155: 105084. |
75 | ZHANG Q, LIU G Z, WANG L, et al. Controllable decomposition of methanol for active fuel cooling technology[J]. Energy & Fuels, 2014, 28(7): 4431-4439. |
76 | PAN X, XIONG Y F, WANG C, et al. Performance analysis of precooled turbojet engine with a low-temperature endothermic fuel[J]. Energy, 2022, 248: 123582. |
77 | YU X F, YU W L, WANG C, et al. Thermodynamic analysis of the influential mechanism of fuel properties on the performance of an indirect precooled hypersonic airbreathing engine and vehicle[J]. Energy Conversion and Management, 2019, 196: 1138-1152. |
78 | WANG C, HUANG H Y, ZHANG J L, et al. Analysis of energy cascade utilization in the chemically precooled engine cycle from a perspective of indirect combustion[J]. Fuel, 2023, 334: 126619. |
79 | TOGAWA M, AOKI T, HIRAKOSO H, et al. A concept of LACE for SSTO space plane[C]∥ 3rd International Aerospace Planes Conference. Reston: AIAA, 1991. |
80 | BOND A. Aerospace propulsion: US5101622[P]. 1992-04-07. |
81 | BALEPIN V. High speed propulsion cycles[C]∥ Advances on Propulsion Technology for High-Speed Aircraft. 2007. |
82 | BALEPIN V V, MAITA M, MURTHY S N B. Third way of development of single-stage-to-orbit propulsion[J]. Journal of Propulsion and Power, 2000, 16(1): 99-104. |
83 | SATO T, TANATSUGU N, HATTA H, et al. Development study of the ATREX engine for TSTO spaceplane[C]∥ Proceedings of the 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2001. |
84 | ISOMURA K, OMI J. A comparative study of an ATREX engine and a turbo jet engine[C]∥ 37th Joint Propulsion Conference and Exhibit. Reston: AIAA, 2001. |
85 | ISOMURA K, OMI J, TANATSUGU N, et al. A feasibility study of a new ATREX engine system of aft-turbine configuration[J]. Acta Astronautica, 2002, 51(1-9): 153-160. |
86 | 郑佳琳. 预冷发动机热力循环及调节规律研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
ZHENG J L. Research on thermodynamic cycle and regulating law of the precooled engine[D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese). | |
87 | 周倩楠. 预冷ATREX发动机新型循环性能优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
ZHOU Q N. The performance optimization of new cycle precooler ATREX engine[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese). | |
88 | 罗佳茂, 杨顺华, 张建强, 等. 甲烷预冷膨胀循环空气涡轮火箭发动机性能分析[J]. 推进技术, 2021, 42(9): 1964-1975. |
LUO J M, YANG S H, ZHANG J Q, et al. Performance analysis of expander cycle air-turborocket with methane-precooled[J]. Journal of Propulsion Technology, 2021, 42(9): 1964-1975 (in Chinese). | |
89 | 罗佳茂, 杨顺华, 母忠强, 等. 预冷型组合循环发动机技术[J]. 空气动力学学报, 2022, 40(1): 190-207. |
LUO J M, YANG S H, MU Z Q, et al. Technology analysis of pre-cooled combined-cycle engine[J]. Acta Aerodynamica Sinica, 2022, 40(1): 190-207 (in Chinese). | |
90 | 张鑫, 陆阳, 李腾, 等. 氨预冷膨胀循环空气涡轮火箭发动机性能分析[C]∥ 第十四届全国高超声速科技学术会议论文集. 2023: 2-10. |
ZHANG X, LU Y, LI T, et al. Performance analysis of ammonia precooled expanded circulating air turbine rocket engine[C]∥ Proceedings of the 14th National Hypersonic Science and Technology Conference. 2023: 2-10 (in Chinese). | |
91 | SATO T, TAGUCHI H, KOBAYASHI H, et al. Development study of precooled-cycle hypersonic turbojet engine for flight demonstration[J]. Acta Astronautica, 2007, 61(1-6): 367-375. |
92 | ZHAO W, HUANG C, ZHAO Q J, et al. Performance analysis of a pre-cooled and fuel-rich pre-burned mixed-flow turbofan cycle for high speed vehicles[J]. Energy, 2018, 154: 96-109. |
93 | 赵巍, 赵庆军, 徐建中. 进气预冷富燃预燃混排涡扇发动机热力循环[J]. 工程热物理学报, 2017, 38(7): 1557-1563. |
ZHAO W, ZHAO Q J, XU J Z. A pre-cooled and fuel-rich pre-burned mixed-flow turbofan cycle[J]. Journal of Engineering Thermophysics, 2017, 38(7): 1557-1563 (in Chinese). | |
94 | WANG C, YU X F, HA C, et al. Thermodynamic analysis for a novel chemical precooling turbojet engine based on a multi-stage precooling-compression cycle[J]. Energy, 2023, 262: 125352. |
95 | WANG C, FENG Y, LIU Z K, et al. Assessment of thermodynamic performance and CO2 emission reduction for a supersonic precooled turbine engine cycle fueled with a new green fuel of ammonia[J]. Energy, 2022, 261: 125272. |
96 | WANG C, CHENG K L, QIN J, et al. Performance comparison of three chemical precooled turbine engine cycles using methanol and n-decane as the precooling fuels[J]. Energy, 2022, 249: 123606. |
97 | 温泉, 苗辉, 周琨. 强预冷涡轮发动机关键技术分析[J]. 航空科学技术, 2023, 34(5): 1-6. |
WEN Q, MIAO H, ZHOU K. Key technology analysis of precooled turbine engine[J]. Aeronautical Science & Technology, 2023, 34(5): 1-6 (in Chinese). | |
98 | WEBBER H, BOND A, HEMPSELL M. Sensitivity of pre-cooled air-breathing engine performance to heat exchanger design parameters[C]∥ 57th International Astronautical Congress. Reston: AIAA, 2006. |
99 | YU X F, WANG C, YU D R. Minimization of entropy generation of a closed Brayton cycle based precooling-compression system for advanced hypersonic airbreathing engine[J]. Energy Conversion and Management, 2020, 209: 112548. |
100 | FERNÁNDEZ-VILLACÉ V, PANIAGUA G. On the exergetic effectiveness of combined-cycle engines for high speed propulsion[J]. Energy, 2013, 51: 382-394. |
101 | ZHANG J Q, WANG Z G, LI Q L. Thermodynamic efficiency analysis and cycle optimization of deeply precooled combined cycle engine in the air-breathing mode[J]. Acta Astronautica, 2017, 138: 394-406. |
102 | 屈原, 徐旭, 杨庆春. 㶲分析在协同吸气式火箭发动机中的应用[J]. 推进技术, 2019, 40(8): 1693-1701. |
QU Y, XU X, YANF Q C. Application of exergy analysis in synergistic air-breathing rocket engine[J]. Journal of Propulsion Technology, 2019, 40(8): 1693-1701 (in Chinese). | |
103 | FERNÁNDEZ V V. Simulation, design and analysis of air-breathing combined-cycle engines for high speed propulsion[D]. Brussels: Von Karman Institute for Fluid Dynamics, 2013. |
104 | DONG P C, TANG H L, CHEN M, et al. Overall performance design of paralleled heat release and compression system for hypersonic aeroengine[J]. Applied Energy, 2018, 220: 36-46. |
105 | YU X F, WANG C, YU D R. Configuration optimization of the tandem cooling-compression system for a novel precooled hypersonic airbreathing engine[J]. Energy Conversion and Management, 2019, 197: 111827. |
106 | BREVAULT L, BALESDENT M, WUILBERCQ R, et al. Conceptual design of a two-stage-to-orbit vehicle using SABRE engines[C]∥ EUCASS 2019. 2019. |
107 | 高远, 陈玉春, 王治华, 等. 深冷组合循环发动机吸气模态循环分析与设计可行域研究[J]. 推进技术, 2020, 41(6): 1217-1226. |
GAO Y, CHEN Y C, WANG Z H, et al. Cycle analysis and design feasible region research of deeply precooled combined cycle engine in airbreathing mode[J]. Journal of Propulsion Technology, 2020, 41(6): 1217-1226 (in Chinese). | |
108 | 陈操斌, 郑日恒, 马同玲, 等. 带有闭式布雷顿循环的预冷发动机特性研究[J]. 推进技术, 2021, 42(8): 1749-1760. |
CHEN C B, ZHENG R H, MA T L, et al. Characteristics of precooled engine with closed brayton cycle[J]. Journal of Propulsion Technology, 2021, 42(8): 1749-1760 (in Chinese). | |
109 | FEAST S. The synergetic air-breathing rocket engine (SABRE) development status update[C]∥ Proceedings of the International Astronautical Congress. 2020: IAC-20- C4-7-1. |
110 | BOND A, VARVILL R. Combined turbojet and turboprop engine: WO2014GB00408 [P]. 2014-10-10. |
111 | JIVRAJ F, BOND A, VARVILL R, et al. The scimitar precooled Mach 5 engine[C]∥ 2nd European Conference for Aerospace Sciences. 2007. |
112 | VILLACE V F, PANIAGUA G. Simulation of a variable-combined-cycle engine for dual subsonic and supersonic cruise[C]∥ 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2011. |
113 | TANBAY T, DURMAYAZ A. Energy, exergy and ecological analysis and multiobjective optimization of the hydrogen-fueled Scimitar engine with fixed nozzle geometry[J]. International Journal of Hydrogen Energy, 2022, 47(45): 19876-19887. |
114 | TANBAY T, UCA M B, DURMAYAZ A. Assessment of NO x emissions of the Scimitar engine at Mach 5 based on a thermodynamic cycle analysis[J]. International Journal of Hydrogen Energy, 2020, 45(5): 3632-3640. |
115 | TANBAY T, DURMAYAZ A. Exergy and NO x emission-based ecological performance analysis of the scimitar engine[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(8): 081008. |
116 | 张蒙正, 南向谊, 刘典多. 预冷空气涡轮火箭组合动力系统原理与实现途径[J]. 火箭推进, 2016, 42(1): 6-12. |
ZHANG M Z, NAN X Y, LIU D D. Principles and realizing ways of combined power system for pre-cooling air turbo rocket[J]. Journal of Rocket Propulsion, 2016, 42(1): 6-12 (in Chinese). | |
117 | 朱岩, 马元, 张蒙正. 预冷空气涡轮火箭发动机氦循环系统的参数特性[J]. 航空动力学报, 2018, 33(8): 2016-2024. |
ZHU Y, MA Y, ZHANG M Z. Characteristic of helium cycle system parameters for pre-cooling air turbo rocket engine[J]. Journal of Aerospace Power, 2018, 33(8): 2016-2024 (in Chinese). | |
118 | 张蒙正, 刘典多, 马海波, 等. PATR发动机关键技术与性能提升途径初探[J]. 推进技术, 2018, 39(9): 1921-1927. |
ZHANG M Z, LIU D D, MA H B, et al. Preliminary analysis on critical technology and performance improvement of PATR engine[J]. Journal of Propulsion Technology, 2018, 39(9): 1921-1927 (in Chinese). | |
119 | FERNÁNDEZ-VILLACÉ V, PANIAGUA G. Simulation of a combined cycle for high speed propulsion[C]∥Proceedings of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
120 | ZHANG D, CHEN C, YU X F. Control law synthetizing for an innovative indirect precooled airbreathing engine under off-design operation conditions[J]. Energy, 2023, 263: 126110. |
121 | 高远, 陈玉春, 史新兴. 深冷组合发动机吸气模态最大状态控制规律研究[J]. 推进技术, 2020, 41(12): 2659-2669. |
GAO Y, CHEN Y C, SHI X X. Maximum state control schedule research on deeply precooled combined cycle engine in airbreathing mode[J]. Journal of Propulsion Technology, 2020, 41(12): 2659-2669 (in Chinese). | |
122 | 马文友, 张文胜, 马元, 等. 基于控制规律的PATR发动机典型工况点速度与高度特性分析[J]. 火箭推进, 2022, 48(6): 35-43. |
MA W Y, ZHANG W S, MA Y, et al. Analysis of velocity and altitude characteristics at typical operating conditions based on control law of PATR engine[J]. Journal of Rocket Propulsion, 2022, 48(6): 35-43 (in Chinese). | |
123 | LONGSTAFF R, BOND A. The SKYLON project[C]∥ 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011. |
[1] | 郑建成, 曲智国, 谭贤四, 李志淮, 朱刚, 李陆军, 刘伟. 基于责任区划分的雷达网探测高超声速目标资源管理[J]. 航空学报, 2024, 45(8): 329022-329022. |
[2] | 戴今钊, 陈海昕. 流场波系引导的三维消波翼优化设计方法[J]. 航空学报, 2024, 45(6): 628942-628942. |
[3] | 刘小勇, 王明福, 刘建文, 任鑫, 张轩. 超燃冲压发动机研究回顾与展望[J]. 航空学报, 2024, 45(5): 529878-529878. |
[4] | 杨博, 于贺, 樊子辰. 微观能量分析气动光学效应时变误差的方法[J]. 航空学报, 2024, 45(4): 128703-128703. |
[5] | 李学良, 李创创, 苏伟, 吴杰. 分布式粗糙元对高超声速边界层不稳定性的影响试验[J]. 航空学报, 2024, 45(2): 128627-128627. |
[6] | 赖江, 范召林, 王乾, 董思卫, 童福林, 袁先旭. 高超声速有攻角锥裙直接数值模拟[J]. 航空学报, 2024, 45(2): 128610-128610. |
[7] | 熊有德, 李创创, 张振辉, 吴杰. 高超声速风洞自由来流扰动热线测量技术[J]. 航空学报, 2024, 45(10): 129042-129042. |
[8] | 倪炜霖, 王永海, 徐聪, 赤丰华, 梁海朝. 基于强化学习的高超飞行器协同博弈制导方法[J]. 航空学报, 2023, 44(S2): 729400-729400. |
[9] | 于哲峰, 梁世昌, 石卫波, 田得阳, 石安华, 廖东骏, 杨鹰. 类HTV⁃2飞行器光电特性的分析评估技术[J]. 航空学报, 2023, 44(S2): 729465-729465. |
[10] | 马平, 张宁, 石安华, 于哲峰, 梁世昌, 黄洁. 典型微波波段信号在模拟等离子体中的传输特性[J]. 航空学报, 2023, 44(S2): 729476-729476. |
[11] | 陈浩宇, 王彬文, 宋巧治, 李晓东. 热颤振地面模拟试验技术[J]. 航空学报, 2023, 44(8): 227295-227295. |
[12] | 常思源, 肖尧, 李广利, 田中伟, 张凯凯, 崔凯. 翼反角对高压捕获翼构型高超气动特性的影响[J]. 航空学报, 2023, 44(8): 127349-127349. |
[13] | 杨国涛, 岳振江, 刘莉. 基于自适应采样的高超声速飞行器气动热全局快速预示[J]. 航空学报, 2023, 44(6): 127391-127391. |
[14] | 刘宏康, 陈坚强, 向星皓, 赵雅甜. 改进k-ω-γ转捩模式对不同雷诺数下HIAD的转捩预测[J]. 航空学报, 2023, 44(6): 126868-126868. |
[15] | 马崇立, 刘景源. 网格对高超声速钝头体表面热流数值模拟结果的影响[J]. 航空学报, 2023, 44(5): 126710-126710. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 529
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 642
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学