1 |
龚春林, 陈兵. 组合循环动力在水平起降天地往返飞行器上的应用[J]. 科技导报, 2020, 38(12): 25-32.
|
|
GONG C L, CHEN B. Application analysis of combined cycle engine in horizontal take-off and landing aerospace vehicles[J]. Science & Technology Review, 2020, 38(12): 25-32 (in Chinese).
|
2 |
何国强, 秦飞, 魏祥庚, 等. 火箭冲压组合发动机燃烧的若干基础问题研究[J]. 实验流体力学, 2016, 30(1): 1-14, 27.
|
|
HE G Q, QIN F, WEI X G, et al. Investigation of several fundamental combustion problems in rocket-based combined-cycle engines[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1): 1-14, 27 (in Chinese).
|
3 |
张升升, 郑雄, 吕雅, 等. 国外组合循环动力技术研究进展[J]. 科技导报, 2020, 38(12): 33-53, 181.
|
|
ZHANG S S, ZHENG X, LÜ Y, et al. Research progress of oversea combined cycle propulsion technology[J]. Science & Technology Review, 2020, 38(12): 33-53, 181 (in Chinese).
|
4 |
罗佳茂, 杨顺华, 母忠强, 等. 预冷型组合循环发动机技术[J]. 空气动力学学报, 2022, 40(1): 190-207.
|
|
LUO J M, YANG S H, MU Z Q, et al. Technology analysis of pre-cooled combined-cycle engine[J]. Acta Aerodynamica Sinica, 2022, 40(1): 190-207 (in Chinese).
|
5 |
韦宝禧, 凌文辉, 冮强, 等. TRRE发动机关键技术分析及推进性能探索研究[J]. 推进技术, 2017, 38(2): 298-305.
|
|
WEI B X, LING W H, GANG Q, et al. Analysis of key technologies and propulsion performance research of TRRE engine[J]. Journal of Propulsion Technology, 2017, 38(2): 298-305 (in Chinese).
|
6 |
张玫, 张蒙正, 刘昊. 火箭基组合循环动力研究进展[J]. 科技导报, 2020, 38(12): 54-68.
|
|
ZHANG M, ZHANG M Z, LIU H. Progress and analysis of rocket based combined cycle(RBCC) propulsion system[J]. Science & Technology Review, 2020, 38(12): 54-68 (in Chinese).
|
7 |
BOWCUTT K, SMITH T R, KOTHARI A, et al. The hypersonic space and global transportation system: A concept for routine and affordable access to space: AIAA-2011-2295[R]. Reston: AIAA, 2011.
|
8 |
SHI L, HE G Q, QIN F, et al. Rocket-based combined-cycle inlet researches in northwestern polytechnical university[C]∥2018 9th International Conference on Mechanical and Aerospace Engineering (ICMAE). Piscataway: IEEE Press, 2018: 151-156.
|
9 |
王亚军, 何国强, 秦飞, 等. 火箭冲压组合动力研究进展[J]. 宇航学报, 2019, 40(10): 1125-1133.
|
|
WANG Y J, HE G Q, QIN F, et al. Research progress of rocket based combined cycle engines[J]. Journal of Astronautics, 2019, 40(10): 1125-1133 (in Chinese).
|
10 |
KANDA T, KUDO K. Conceptual study of a combined-cycle engine for an aerospace plane[J]. Journal of Propulsion and Power, 2003, 19(5): 859-867.
|
11 |
KOBAYASHI S, MAITA M. Japanese spaceplane program overview: AIAA-1995-6002 [R]. Reston: AIAA, 1995.
|
12 |
TANATSUGU N, CARRICK P. Hypersonic and combined cycle propulsion for earth-to-orbit applications: AIAA-2003-2586 [R]. Reston: AIAA, 2003.
|
13 |
AUSLENDER A, SUDER K, THOMAS S R. An overview of the NASA FAP hypersonics project airbreathing propulsion research: AIAA-2009-7277[R]. Reston: AIAA, 2009.
|
14 |
SNYDER L E, ESCHER D, DEFRANCESCO R, et al. Turbine based combination cycle (TBCC) propulsion subsystem integration: AIAA-2004-3649 [R]. Reston: AIAA, 2004.
|
15 |
EKLUND D, BOUDREAU A, BRADFORD J. A turbine-based combined cycle solution for responsive space access: AIAA-2005-4186[R]. Reston: AIAA, 2005.
|
16 |
ZHOU J X, LU H H, ZHANG H C, et al. A preliminary research on a two-stage-to-orbit vehicle with airbreathing pre-cooled hypersonic engines: AIAA-2017-2343[R]. Reston: AIAA, 2017.
|
17 |
MOSES P L, RAUSCH V L, NGUYEN L T, et al. NASA hypersonic flight demonstrators—Overview, status, and future plans[J]. Acta Astronautica, 2004, 55(3-9): 619-630.
|
18 |
包为民. 推进组合动力飞行器技术深入研究,开创航天运输发展新时代[J]. 科技导报, 2020, 38(12): 1.
|
|
BAO W M. Promote in-depth research on combined cyclepowered vehicle technology, and create a newera of space transportation development[J]. Science & Technology Review, 2020, 38(12): 1 (in Chinese).
|
19 |
王振国, 梁剑寒, 丁猛, 等. 高超声速飞行器动力系统研究进展[J]. 力学进展, 2009, 39(6): 716-739.
|
|
WANG Z G, LIANG J H, DING M, et al. A review on hypersonic airbreathing propulsion system[J]. Advances in Mechanics, 2009, 39(6): 716-739 (in Chinese).
|
20 |
王长青. 空天飞行技术创新与发展展望[J]. 宇航学报, 2021, 42(7): 807-819.
|
|
WANG C Q. Technological innovation and development prospect of aerospace vehicle[J]. Journal of Astronautics, 2021, 42(7): 807-819 (in Chinese).
|
21 |
王长青. 组合动力运载器发展与展望[J]. 中国航天, 2022(1): 9-16.
|
|
WANG C Q. Development and prospect of aerospace vehicle with combined cycle engine[J]. Aerospace China, 2022(1): 9-16 (in Chinese).
|
22 |
赵文胜. 组合循环发动机科学研究技术路线的优化[J]. 科技导报, 2021, 39(17): 82-90.
|
|
ZHAO W S. Research on R & D technical route of combined cycle engine[J]. Science & Technology Review, 2021, 39(17): 82-90 (in Chinese).
|
23 |
彭小波. 组合动力飞行器技术发展[J]. 导弹与航天运载技术, 2016(5): 1-6.
|
|
PENG X B. Development of combined-cycle aerospace vehicle technology[J]. Missiles and Space Vehicles, 2016(5): 1-6 (in Chinese).
|
24 |
彭小波. 组合循环动力技术在天地往返领域的发展与应用[J]. 导弹与航天运载技术, 2013(1): 78-82.
|
|
PENG X B. Development of combined cycle propulsion technology in reusable launch vehicle[J]. Missiles and Space Vehicles, 2013(1): 78-82 (in Chinese).
|
25 |
张旭辉. 组合动力技术的未来应用[J]. 科技导报, 2020, 38(12): 15-24, 2.
|
|
ZHANG X H. Future application of combined cycle propulsion technology[J]. Science & Technology Review, 2020, 38(12): 15-24, 2 (in Chinese).
|
26 |
李斌, 张蒙正, 黄道琼, 等. 组合发动机研究中若干问题探讨[J]. 火箭推进, 2022, 48(6): 1-8.
|
|
LI B, ZHANG M Z, HUANG D Q, et al. Discussion on some problems in combined engine research[J]. Journal of Rocket Propulsion, 2022, 48(6): 1-8 (in Chinese).
|
27 |
张蒙正, 李平, 陈祖奎. 组合循环动力系统面临的挑战及前景[J]. 火箭推进, 2009, 35(1): 1-8, 15.
|
|
ZHANG M Z, LI P, CHEN Z K. Challenge and perspective of combined cycle propulsion system[J]. Journal of Rocket Propulsion, 2009, 35(1): 1-8, 15 (in Chinese).
|
28 |
张蒙正, 李斌, 李光熙. 组合动力:现状、问题与对策[J]. 火箭推进, 2021, 47(6): 1-10.
|
|
ZHANG M Z, LI B, LI G X. Combined cycle propulsion: Current status, problems and solutions[J]. Journal of Rocket Propulsion, 2021, 47(6): 1-10 (in Chinese).
|
29 |
秦飞, 吕翔, 刘佩进, 等. 火箭基组合推进研究现状与前景[J]. 推进技术, 2010, 31(6): 660-665.
|
|
QIN F, LV X, LIU P J, et al. Research status and perspective of rocket based combined cycle propulsion system[J]. Journal of Propulsion Technology, 2010, 31(6): 660-665 (in Chinese).
|
30 |
曾家, 黄辉, 朱平平, 等. 火箭基组合动力研究进展与关键技术[J]. 宇航总体技术, 2022, 6(3): 49-57.
|
|
ZENG J, HUANG H, ZHU P P, et al. Research progress and key technology analysis of rocket based combined cycle engines[J]. Astronautical Systems Engineering Technology, 2022, 6(3): 49-57 (in Chinese).
|
31 |
尹泽勇, 蔚夺魁, 徐雪. 高马赫数涡轮基推进系统的发展及挑战[J]. 航空发动机, 2021, 47(4): 1-7.
|
|
YIN Z Y, YU D K, XU X. Development trend and technical challenge of high Mach number turbine based propulsion system[J]. Aeroengine, 2021, 47(4): 1-7 (in Chinese).
|
32 |
陈敏, 贾梓豪. 涡轮基组合循环动力关键技术进展[J]. 科技导报, 2020, 38(12): 69-84.
|
|
CHEN M, JIA Z H. Progress and prospect of key technologies for turbine based combined cycle engine[J]. Science & Technology Review, 2020, 38(12): 69-84 (in Chinese).
|
33 |
郑日恒, 陈操斌. 涡轮基组合循环发动机推力陷阱问题解决方案[J]. 火箭推进, 2021, 47(6): 21-32.
|
|
ZHENG R H, CHEN C B. Overview of solutions to TBCC engine thrust trap problem[J]. Journal of Rocket Propulsion, 2021, 47(6): 21-32 (in Chinese).
|
34 |
王占学, 刘增文, 王鸣, 等. 涡轮基组合循环发动机技术发展趋势和应用前景[J]. 航空发动机, 2013, 39(3): 12-17.
|
|
WANG Z X, LIU Z W, WANG M, et al. Future development and application prospect of turbine based combined cycle engine[J]. Aeroengine, 2013, 39(3): 12-17 (in Chinese).
|
35 |
王一帆,邹正平,陈懋章 .高超声速强预冷发动机热力循环研究进展[J].航空学报, 2023, 44(21): 529343.
|
|
WANG Y F, ZOU Z P, CHEN M Z. Progress in research of thermodynamic cycle of hypersonic precooled engine [J]. Acta Aeronautica et As-tronautica Sinica, 2023, 44(21): 529343 (in Chinese).
|
36 |
马晓秋. 预冷吸气组合发动机研究进展与关键技术分析[J]. 科技导报, 2020, 38(12): 85-95.
|
|
MA X Q. Research progress of pre-cooled air-breathing combined engines and analysis of the key technology[J]. Science & Technology Review, 2020, 38(12): 85-95 (in Chinese).
|
37 |
OLDS J, BRADFORD J, CHARANIA A, et al. Hyperion - An SSTO vision vehicle concept utilizing rocket-based combined cycle propulsion[C]∥Proceedings of the 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1999.
|
38 |
UEDA S, TOMIOKA S, Toshihito SAITO T, et al. R&D on hydrocarbon-fueled RBCC engines for a TSTO launch vehicle: AIAA-2015-3611[R]. Reston: AIAA, 2015.
|
39 |
EHRLICH C. Early studies of RBCC applications and lessons learned for today: AIAA-2000-3105[R]. Reston: AIAA, 2000.
|
40 |
HUETER U, TURNER J. Rocket-based combined cycle activities in the Advanced Space Transportation Program office[C]∥Proceedings of the 35th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1999.
|
41 |
RATCKIN G, GOLDMAN A, ORTWERTH P, et al. Rocketdyne RBCC engine concept development [C]∥14th International Symposium on Air Breathing Engines. 1999.
|
42 |
QUINN J. ISTAR: project status and ground test engine design[C]∥Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2003.
|
43 |
YE J Y, PAN H L, QIN F, et al. Investigation of RBCC performance improvements based on a variable geometry ramjet combustor[J]. Acta Astronautica, 2018, 151: 874-885.
|
44 |
SHI L, LIU X W, HE G Q, et al. Numerical analysis of flow features and operation characteristics of a rocket-based combined-cycle inlet in ejector mode[J]. Acta Astronautica, 2016, 127: 182-196.
|
45 |
SHI L, HE G Q, LIU P J, et al. A rocket-based combined-cycle engine prototype demonstrating comprehensive component compatibility and effective mode transition[J]. Acta Astronautica, 2016, 128: 350-362.
|
46 |
WEI X G, XUE R, QIN F, et al. Research on shock wave characteristics in the isolator of central strut rocket-based combined cycle engine under Ma5.5[J]. Acta Astronautica, 2017, 140: 284-292.
|