1 |
伍荣林, 王振羽. 风洞设计原理[M]. 北京: 北京航空学院出版社, 1985: 23-24.
|
|
WU R L, WANG Z Y. Wind tunnel design principle[M]. Beijing: Beihang University Press, 1985: 23-24 (in Chinese).
|
2 |
FEDOROV A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43: 79-95.
|
3 |
SCHNEIDER S P. Effects of high-speed tunnel noise on laminar-turbulent transition[J]. Journal of Spacecraft and Rockets, 2001, 38(3): 323-333.
|
4 |
WAN B B, CHEN J Q, YUAN X X, et al. Three-dimensional receptivity of a blunt-cone boundary layer to incident slow acoustic waves[J]. AIAA Journal, 2022, 60(8): 4523-4531.
|
5 |
WAN B B, SU C H, CHEN J Q. Receptivity of a hypersonic blunt cone: Role of disturbances in entropy layer[J]. AIAA Journal, 2020, 58(9): 4047-4054.
|
6 |
YAO Y, KRISHNAN L, SANDHAM N D, et al. The effect of Mach number on unstable disturbances in shock/boundary-layer interactions[J]. Physics of Fluids, 2007, 19(5): 054104.
|
7 |
陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311-337.
|
|
CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition: What we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-337 (in Chinese).
|
8 |
COMTE-BELLOT G. Hot-wire anemometry[J]. Annual Review of Fluid Mechanics, 1976, 8: 209-231.
|
9 |
KOVASZNAY L S G. Turbulence in supersonic flow[J]. Journal of the Aeronautical Sciences, 1953, 20(10): 657-674.
|
10 |
MORKOVIN M V. On supersonic wind tunnels with low free-stream disturbances[J]. Journal of Applied Mechanics, 1959, 26(3): 319-324.
|
11 |
LAUFER J. Aerodynamic noise in supersonic wind tunnels[J]. Journal of the Aerospace Sciences, 1961, 28(9): 685-692.
|
12 |
LOGAN P. Modal analysis of hot-wire measurements in supersonic turbulence[C]∥AIAA 26th Aerospace Sciences Meeting. Reston: AIAA, 1988.
|
13 |
LOGAN P. Improved method of analyzing hot-wire measurements in supersonic turbulence[J]. AIAA Journal, 1989, 27: 115-117.
|
14 |
杜钰锋, 林俊, 马护生, 等. 可压缩流体恒温热线风速仪校准方法[J]. 航空学报, 2017, 38(6): 120600.
|
|
DU Y F, LIN J, MA H S, et al. Calibration method for constant temperature hot-wire anemometer for compressible fluid[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120600 (in Chinese).
|
15 |
杜钰锋, 林俊, 马护生, 等. 可压缩流湍流度变热线过热比测量方法[J]. 航空学报, 2017, 38(11): 121236.
|
|
DU Y F, LIN J, MA H S, et al. Measurement technique for turbulence level in compressible fluid by changing overheat ratio of hot-wire[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 121236 (in Chinese).
|
16 |
杜钰锋, 林俊, 王勋年, 等. 变热线过热比可压缩流湍流度测量方法优化[J]. 航空学报, 2019, 40(12): 123067.
|
|
DU Y F, LIN J, WANG X N, et al. Measurement technique optimization of turbulence level in compressible fluid by changing overheat ratio of hot wire anemometer[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 123067 (in Chinese).
|
17 |
杜钰锋, 林俊, 王勋年, 等. 亚声速风洞可压缩流体扰动模态分析[J]. 航空学报, 2021, 42(6): 124424.
|
|
DU Y F, LIN J, WANG X N, et al. Analysis of modes of disturbances in compressible fluid in subsonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124424 (in Chinese).
|
18 |
朱博, 廖达雄, 陈振华, 等. 跨声速流场扰动模态与湍流度精细测量[J]. 航空学报, 2023, 44(4): 126378.
|
|
ZHU B, LIAO D X, CHEN Z H, et al. Fine measurement for fluctuation mode and turbulence level in transonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 126378 (in Chinese).
|
19 |
朱博, 熊波, 吴巍, 等. 定/变热线过热比跨超声速流场湍流度测量[J]. 航空动力学报, 2022, 37(9): 1815-1823.
|
|
ZHU B, XIONG B, WU W, et al. Keeping and varying hot wire overheat ratio measurement for turbulence level in transonic and supersonic flow field[J]. Journal of Aerospace Power, 2022, 37(9): 1815-1823 (in Chinese).
|
20 |
余涛, 王俊鹏, 刘向宏, 等. 高超声速风洞来流扰动测量及数据后处理技术研究[J]. 实验流体力学, 2019, 33(5): 49-56.
|
|
YU T, WANG J P, LIU X H, et al. Measurements and data processing technology of freestream fluctuations in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 49-56 (in Chinese).
|
21 |
STAINBACK P, WAGNER R. A comparison of disturbance levels measured in hypersonic tunnels using a hot-wire anemometer and a pitot pressure probe[C]∥AIAA 7th Aerodynamic Testing Conference. Reston: AIAA, 1972.
|
22 |
BRUUN H H. Hot-wire anemometry: principles and signal analysis[M]. Oxford: Oxford Unversity Press, 1995.
|
23 |
WEISS J, KNAUSS H, WAGNER S, et al. Constant temperature hot-wire measurements in a short duration supersonic wind tunnel[J]. The Aeronautical Journal, 2001, 105(1050): 435-441.
|
24 |
KOVASZNAY L S G. The hot-wire anemometer in supersonic flow[J]. Journal of the Aeronautical Sciences, 1950, 17(9): 565-572.
|
25 |
VESSOT KING L. On the convection of heat from small cylinders in a stream of fluid: Determination of the convection constants of small platinum wires with applications to hot-wire anemometry[J]. Philosophical Transactions of the Royal Society of London Series A, 1914, 214: 373-432.
|
26 |
SPINA E F, MCGINLEY C B. Constant-temperature anemometry in hypersonic flow: Critical issues and Sample results[J]. Experiments in Fluids, 1994, 17(6): 365-374.
|
27 |
LAUFER J, MCCLELLAN R. Measurements of heat transfer from fine wires in supersonic flows[J]. Journal of Fluid Mechanics, 1956, 1(3): 276-289.
|
28 |
BALDWIN L V, SANDBORN V A, LAURENCE J C. Heat transfer from transverse and yawed cylinders in continuum, slip, and free molecule air flows[J]. Journal of Heat Transfer, 1960, 82(2): 77-86.
|
29 |
STALDER J R, GOODWIN G, CREAGER M O. Heat-transfer to bodies in a high-speed rarefied-gas stream: NACA-TR-1093[R]. Washington, D.C.: NACA, 1952.
|
30 |
STALDER J R, GOODWIN G, CREAGER M O. A comparison of theory and experiment for high-speed free-molecule flow: NACA-TR-1032[R]. Washington, D.C.: NACA, 1951.
|
31 |
WEISS J. Experimental determination of the free stream disturbance field in the short duration supersonic wind tunnel of stuttgart university[D]. Stuttgart: Stuttgart University, 2002: 35-36.
|
32 |
MORKOVIN M V. Fluctuations and hot-wire anemometry in compressible flows [R]. Brussels: NATO, 1956.
|
33 |
SCHNEIDER S P. Development of hypersonic quiet tunnels[J]. Journal of Spacecraft and Rockets, 2008, 45(4): 641-664.
|
34 |
BARRE S, ALEM D, BONNET J P. Experimental study of a normal shock/homogeneous turbulence interaction[J]. AIAA Journal, 1996, 34(5): 968-974.
|
35 |
WEISS J, KNAUSS H, WAGNER S. Method for the determination of frequency response and signal to noise ratio for constant-temperature hot-wire anemometers[J]. Review of Scientific Instruments, 2001, 72(3): 1904-1909.
|
36 |
SCHLATTER P, LI Q, BRETHOUWER G, et al. Structure of a turbulent boundary layer studied by DNS[C]∥Direct and Large-Eddy Simulation VIII. Dordrecht: Springer, 2011: 9-14.
|
37 |
MAI C L, BOWERSOX R D. Effect of a normal shock wave on freestream total pressure fluctuations in a low-density Mach 6 flow[C]∥Proceedings of the 44th AIAA Fluid Dynamics Conference. Reston: AIAA, 2014.
|
38 |
MUNOZ F, WU J, RADESPIEL R, et al. Freestream disturbances characterization in ludwieg tubes at Mach 6[C]∥Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
|
39 |
KOLMOGOROV A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1991, 434: 9-13.
|
40 |
DUAN L, CHOUDHARI M M, ZHANG C. Pressure Fluctuations induced by a Hypersonic Turbulent Boundary Layer[J]. Journal of Fluid Mechanics, 2016, 804: 578-607.
|
41 |
WALKER D A, NG W F, WALKER M D. Experimental comparison of two hot-wire techniques in supersonic flow[J]. AIAA Journal, 1989, 27(8): 1074-1080.
|
42 |
HILDEBRAND N, CHOUDHARI M M, DEEGAN C P, et al. Direct numerical simulation of acoustic disturbances in a hypersonic two-dimensional nozzle configuration[J]. AIAA Journal, 2022, 60(6): 3452-3463.
|