收稿日期:
2023-07-10
修回日期:
2023-08-14
接受日期:
2023-08-24
出版日期:
2023-11-15
发布日期:
2023-09-01
通讯作者:
解春雷
E-mail:xiechl2022@163.com
基金资助:
Xuhui ZHANG, Chunlei XIE(), Sijia LIU, Ming YAN, Siyuan XING
Received:
2023-07-10
Revised:
2023-08-14
Accepted:
2023-08-24
Online:
2023-11-15
Published:
2023-09-01
Contact:
Chunlei XIE
E-mail:xiechl2022@163.com
Supported by:
摘要:
随着智能技术向军事领域的渗透与发展,未来的智能化战争将呈现“认知与决策更加复杂、变化与演进更加迅速、进入与拒止全域全维”3个方面的特征,下一代飞行器将以按需飞行为本,以人工智能为核,以灵活变化为要。智能变形飞行器,其特点突出表现在“智能”与“变形”两方面,整体发挥“算法极速升级”与“硬件极度灵活”的双重优势,有望形成新型飞行模式与新质作战能力,将是未来重要的发展趋势。然而智变飞行器技术难度高,变形在系统复杂度提升等方面带来代价,对气动设计、飞行控制、结构实现均提出诸多难题,其核心问题是在工程多学科约束下实现每个形态的最优设计,具体涉及变形过程中的全剖面优化准则、变形结构机构实现、性能预示与验证等。
中图分类号:
张旭辉, 解春雷, 刘思佳, 闫溟, 邢思远. 智能变形飞行器发展需求及难点分析[J]. 航空学报, 2023, 44(21): 529302-529302.
Xuhui ZHANG, Chunlei XIE, Sijia LIU, Ming YAN, Siyuan XING. Development needs and difficulty analysis for smart morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 529302-529302.
1 | JOSHI S, TIDWELL Z, CROSSLEY W, et al. Comparison of morphing wing stategies based upon aircraft performance impacts[C]∥ 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston: AIAA, 2004. |
2 | ABDULRAHIM M, LIND R. Using avian morphology to enhance aircraft maneuverability[C]∥ Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2006. |
3 | SMITH K, BUTT J, VON SPAKOVSKY M, et al. A study of the benefits of using morphing wing technology in fighter aircraft systems[C]∥ Proceedings of the 39th AIAA Thermophysics Conference. Reston: AIAA, 2007. |
4 | TAMAI M, MURPHY J, HU H. An experimental study of flexible membrane airfoils at low Reynolds numbers[C]∥ Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
5 | KRESS R. Variable sweep wing design[C]∥ Proceedings of the Aircraft Prototype and Technology Demonstrator Symposium. Reston: AIAA, 1983. |
6 | 韩传东, 梅守保. 变体飞机技术应用前景与装备谱系研究[J]. 航空科学技术, 2023, 34(3): 10-15. |
HAN C D, MEI S B. Research on application prospect and equipment ancestry of morphing aircraft technology[J]. Aeronautical Science & Technology, 2023, 34(3): 10-15 (in Chinese). | |
7 | OPDYCKE L E. French aeroplanes before the great war (Schiffer Military History) [M]. Atglen: Schiffer Military History, 1999. |
8 | WEISSHAAR T. Morphing aircraft technology-new shapes for aircraft design[EB/OL]. (2006-10-01)[2023-07-01]. . |
9 | 崔尔杰, 白鹏, 杨基明. 智能变形飞行器的发展道路[J]. 航空制造技术, 2007, 50(8): 38-41. |
CUI E J, BAI P, YANG J M. Development path of intelligent morphing aircraft[J]. Aeronautical Manufacturing Technology, 2007, 50(8): 38-41 (in Chinese). | |
10 | 董二宝. 智能变形飞行器结构实现机制与若干关键技术研究[D]. 合肥: 中国科学技术大学, 2010. |
DONG E B. Research on realization mechanism and some key technologies of smart morphing aircraft structures[D]. Hefei: University of Science and Technology of China, 2010 (in Chinese). | |
11 | 冷劲松, 孙健, 刘彦菊. 智能材料和结构在变体飞行器上的应用现状与前景展望[J]. 航空学报, 2014, 35(1): 29-45. |
LENG J S, SUN J, LIU Y J. Application status and future prospect of smart materials and structures in morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 29-45 (in Chinese). | |
12 | 李风雷, 卢昊, 宋闯, 等. 智能化战争与无人系统技术的发展[J]. 无人系统技术, 2018, 1(2): 14-23. |
LI F L, LU H, SONG C, et al. Development of intelligent warfare and unmanned system technology[J]. Unmanned Systems Technology, 2018, 1(2): 14-23 (in Chinese). | |
13 | 蔡明春, 吕寿坤. 智能化战争形态及其支撑技术体系[J]. 国防科技, 2017, 38(1): 94-98. |
CAI M C, LYU S K. Preliminary probing into intelligent warfare and it supporting technology system[J]. National Defense Science & Technology, 2017, 38(1): 94-98 (in Chinese). | |
14 | 王可杰, 詹静. 无人化作战将改变未来战争形态[J]. 军事文摘, 2020(19): 23-26. |
WANG K J, ZHAN J. Unmanned warfare will change the future war form[J]. Military Digest, 2020(19): 23-26 (in Chinese). | |
15 | 谢恺, 张东润, 梁小平. 透视智能化战争制胜机理嬗变[EB/OL]. (2022-04-26) [2023-07-01]. . |
XIE K, ZHANG D R, LIANG X P. Perspective on the transmutation of the winning mechanism of intelligent warfare [EB/OL]. (2022-04-26) [2023-07-01]. (in Chinese). | |
16 | 李婷婷, 刁联旺. 智能化态势认知技术与发展建议[J]. 指挥信息系统与技术, 2020, 11(2): 55-58. |
LI T T, DIAO L W. Technology and development recommendations for intelligent situation awareness[J]. Command Information System and Technology, 2020, 11(2): 55-58 (in Chinese). | |
17 | 常书杰, 张双喜, 陈骁. 集群作战:美要打造智能化军事体系[EB/OL].(2019-02-05) [2023-07-01]. . |
CHANG S J, ZHANG S X, CHEN X. Cluster warfare: U.S. wants to build an intelligent military system [EB/OL]. (2019-02-05) [2023-07-01]. (in Chinese). | |
18 | 张传良, 丁浩淼. 从杀伤链到杀伤网: 全域作战视角下的杀伤链战略[J]. 军事文摘, 2021(3): 7-12. |
ZHANG C L, DING H M. From kill chain to kill net-kill chain strategy from the perspective of global operations[J]. Military Digest, 2021(3): 7-12 (in Chinese). | |
19 | 陈龙, 王凤春, 叶培思. 前瞻智能化战场态势认知[EB/OL]. (2023-03-28) [2023-07-01]. . |
CHEN L, WANG F C, YE P S. Forward-looking intelligent battlefield situational awareness[EB/OL]. (2023-03-28) [2023-07-01]. (in Chinese). | |
20 | 胡磊, 智韬. 智能化作战有何特征[EB/OL]. (2020-06-11) [2023-07-01]. . |
HU L, ZHI T. What are the characteristics of intelligent warfare [EB/OL]. (2020-06-11) [2023-07-01]. (in Chinese). | |
21 | BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877. |
22 | WEISSHAAR T A. Morphing aircraft systems: historical perspectives and future challenges[J]. Journal of Aircraft, 2013, 50(2): 337-353. |
23 | MCGOWAN A M R, VICROY D D, BUSAN R C, et al. Perspectives on highly adaptive or morphing aircraft: RTO-MP-AVT-168 [R]. Washington, D.C.: NASA, 2009. |
24 | 白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报, 2019, 37(3): 426-443. |
BAI P, CHEN Q, XU G W, et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(3): 426-443 (in Chinese). | |
25 | 梁尚军, 杨珂, 牛小康, 等. 变体飞机结构领域研究进展[J]. 飞机设计, 2017, 37(6): 1-5. |
LIANG S J, YANG K, NIU X K, et al. Research progress on structural domain of morphing aircraft[J]. Aircraft Design, 2017, 37(6): 1-5 (in Chinese). | |
26 | SEIGLER T M, NEAL D A, BAE J S, et al. Modeling and flight control of large-scale morphing aircraft[J]. Journal of Aircraft, 2007, 44(4): 1077-1087. |
27 | 陆宇平, 何真, 吕毅. 变体飞行器技术[J]. 航空制造技术, 2008, 51(22): 26-29. |
LU Y P, HE Z, LYU Y. Morphing aircraft technology[J]. Aeronautical Manufacturing Technology, 2008, 51(22): 26-29 (in Chinese). | |
28 | 张平. 中等尺度变形内变体飞机结构设计与变形技术研究[D]. 南京: 南京航空航天大学, 2014. |
ZHANG P. Research on structural design and shape morphing techniques for morphing aircraft at midium scale deformation level[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese). | |
29 | 戎佳欣. 自适应鼓包进气道结构的柔性蒙皮技术研究[D]. 南京: 南京航空航天大学, 2018. |
RONG J X. Research on flexible skin techniques for adaptive bump inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
30 | 王青, 刘华华. 变体飞行器智能自主决策与控制[J]. 现代防御技术, 2020, 48(6): 5-11. |
WANG Q, LIU H H. Intelligent autonomous decision-making and control of morphing aircraft[J]. Modern Defence Technology, 2020, 48(6): 5-11 (in Chinese). | |
31 | GOECKS V G, LEAL P B, WHITE T, et al. Control of morphing wing shapes with deep reinforcement learning[C]∥ Proceedings of the 2018 AIAA Information Systems-AIAA Infotech @ Aerospace. Reston: AIAA, 2018. |
32 | 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022, 43(10): 527449. |
RAN M P, WANG C C, LIU H H, et al. Research status and future development of morphing aircraft control technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527449 (in Chinese). | |
33 | 张尧, 张婉, 别大卫, 等. 智能变体飞行器研究综述与发展趋势分析[J]. 飞航导弹, 2021(6): 14-23. |
ZHANG Y, ZHANG W, BIE D W, et al. Research summary and development trend analysis of intelligent variant aircraft[J]. Aerodynamic Missile Journal, 2021(6): 14-23 (in Chinese). | |
34 | TUCKER V A, PARROTT G C. Aerodynamics of gliding flight in a falcon and other birds[J]. Journal of Experimental Biology, 1970, 52(2): 345-367. |
35 | TUCKER V A. Gliding birds: The effect of variable wing span[J]. Journal of Experimental Biology, 1987, 133(1): 33-58. |
36 | 战培国, 程娅红, 毛京明. 美国变形体飞机研究进展[J]. 航空制造技术, 2010, 53(12): 54-56. |
ZHAN P G, CHENG Y H, MAO J M. Research development of morphing aircraft in United States[J]. Aeronautical Manufacturing Technology, 2010, 53(12): 54-56 (in Chinese). | |
37 | 董彦非, 陈元恺, 彭金京. 可变后掠翼技术发展与展望[J]. 飞行力学, 2014, 32(2): 97-100. |
DONG Y F, CHEN Y K, PENG J J. Development and prospect of variable swept wing[J]. Flight Dynamics, 2014, 32(2): 97-100 (in Chinese). | |
38 | Stuttgart Akaflieg. fs29 – Telescoping wing [EB/OL]. [2023-07-01]. . |
39 | MAUGHMER M. The evolution of sailplane wing design[C]∥ Proceedings of the AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Reston: AIAA, 2003. |
40 | WLEZIEN R, HORNER G, MCGOWAN A, et al. The aircraft morphing program[C]∥ 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston: AIAA, 1998. |
41 | DECAMP R, HARDY R. Mission adaptive wing advanced research concepts[C]∥ Proceedings of the 11th Atmospheric Flight Mechanics Conference. Reston: AIAA, 1984. |
42 | MILLER G D. Active flexible wing (AFW) technology [EB/OL]. (1988-02-01) [2023-07-01]. . |
43 | HEEG J, SPAIN V, FLORANCE J, et al. Experimental results from the active aeroelastic wing wind tunnel test program[C]∥ Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2005. |
44 | PENDLETON E W, BESSETTE D, FIELD P B, et al. Active aeroelastic wing flight research program: technical program and model analytical development[J]. Journal of Aircraft, 2000, 37(4): 554-561. |
45 | VORACEK D, PENDLETON E, REICHENBACH E, et al. Active aeroelastic wing phase-I flight research through January, 2003: NASA/TM-2003-210741 [R]. Washington, D.C.: NASA, 2003. |
46 | KUDVA J N. Overview of the DARPA smart wing project[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 261-267. |
47 | KUDVA J N, MARTIN C A, SCHERER L B, et al. Overview of the DARPA/AFRL/NASA smart wing program[C]∥ 1999 Symposium on Smart Structures and Materials. Proc SPIE 3674, Smart Structures and Materials 1999: Industrial and Commercial Applications of Smart Structures Technologies. 1999, 3674: 230-236. |
48 | KUDVA J N, SANDERS B P, PINKERTON-FLORANCE J L, et al. Overview of the DARPA/AFRL/NASA smart wing phase II program[C]∥ SPIE's 8th Annual International Symposium on Smart Structures and Materials. Proc SPIE 4332, Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies. 2001, 4332: 383-389. |
49 | KUDVA J N, SANDERS B P, PINKERTON-FLORANCE J L, et al. DARPA/AFRL/NASA smart wing program: Final overview[C]∥ SPIE's 9th Annual International Symposium on Smart Structures and Materials. Proc SPIE 4698, Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies. 2002, 4698: 37-43. |
50 | BARTLEY-CHO J D, WANG D P, MARTIN C A, et al. Development of high-rate, adaptive trailing edge control surface for the smart wing phase 2 wind tunnel model[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 279-291. |
51 | PITT D M, DUNNE J P, WHITE E V. SAMPSON smart inlet design overview and wind tunnel test: part I: Design overview[C]∥ SPIE's 9th Annual International Symposium on Smart Structures and Materials. Proc SPIE 4698, Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies. 2002, 4698: 13-23. |
52 | PITT D M, DUNNE J P, WHITE E V. SAMPSON smart inlet design overview and wind tunnel test: part II: Wind tunnel test[C]∥ SPIE's 9th Annual International Symposium on Smart Structures and Materials. Proc SPIE 4698, Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies. 2002, 4698: 24-36. |
53 | PITT D, DUNNE J, WHITE E, et al. SAMPSON smart inlet SMA powered adaptive lip design and static test[C]∥ 19th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2001. |
54 | RODRIGUEZ A. Morphing aircraft technology survey[C]∥ Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
55 | IVANCO T, SCOTT R, LOVE M, et al. Validation of the lockheed martin morphing concept with wind tunnel testing[C]∥ Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
56 | SIMPSON A D. Design and evaluation of inflatable wings for UAVs [D]. Lexington: University of Kentucky, 2008. |
57 | ÖZGEN S, YAMAN Y, ŞAHIN M, et al. Morphing air vehicle concepts [C]∥ Proceedings of the International Workshop on Unmanned Vehicles-UVW. 2010. |
58 | BYE D, MCCLURE P. Design of a morphing vehicle[C]∥ 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
59 | KHEONG B L, JACOB J. In flight aspect ratio morphing using inflatable wings[C]∥ Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
60 | ERBIL M A, PRIOR S D, KARAMANOGLU M, et al. Reconfigurable unmanned aerial vehicles [C]∥ Proceedings of the International Conference on Manufacturing and Engineering Systems Proceedings. 2009. |
61 | ANDERSEN G, COWAN D, PIATAK D. Aeroelastic modeling, analysis and testing of a morphing wing structure[C]∥ 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
62 | BOWMAN J, SANDERS B, CANNON B, et al. Development of next generation morphing aircraft structures[C]∥ 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
63 | FLANAGAN J, STRUTZENBERG R, MYERS R, et al. Development and flight testing of a morphing aircraft, the NextGen MFX-1[C]∥ 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
64 | SULEMAN A, MONIZ P A. Active aeroelastic aircraft structures[C]∥ III European Conference on Computational Mechanics. 2006. |
65 | SULEMAN A, MONIZ P A. Active aeroelastic aircraft structures[C]∥III European Conference on Computational Mechanics. Berlin: Springer Netherlands, 2008: 5. |
66 | SCHWEIGER J, SULEMAN A, KUZMINA S, et al. MDO concepts for an European research project on active aeroelastic aircraft[C]∥ Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 2002. |
67 | AMPRIKIDIS M, COOPER J. Development of smart spars for active aeroelastic structures [C]∥Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2003. |
68 | 最终下马的强 6攻击机[EB/OL]. (2018-09-15) [2023-07-01]. . |
The Nanchang Q-6 was finally cancelled [EB/OL]. (2018-09-15) [2023-07-01]. (in Chinese). | |
69 | 中国科学技术协会. 智能可变形飞行器发展前景及我们的选择[M]. 北京: 中国科学技术出版社, 2010. |
China Association for Science and Technology. Development prospect of smarting morphing aircraft and our choice[M]. Beijing: China Science and Technology Press, 2010 (in Chinese). | |
70 | 方宝瑞. 飞机气动布局设计[M]. 北京: 航空工业出版社, 1997. |
FANG B R. Aerodynamic layout design of aircraft[M]. Beijing: Aviation Industry Press, 1997 (in Chinese). | |
71 | 武文康, 张彬乾. 战斗机气动布局设计[M]. 西安: 西北工业大学出版社, 2005. |
WU W K, ZHANG B Q. Aerodynamic layout design of fighter[M]. Xi’an: Northwestern Polytechnical University Press, 2005 (in Chinese). | |
72 | 帕玛迪. 飞机的性能、稳定性、动力学与控制[M].北京: 航空工业出版社, 2013. |
PAMADI B N. Performance, stability, dynamics, and control of airplanes [M]. Beijing: Aviation Industry Press, 2013 (in Chinese). | |
73 | 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5): 623344. |
HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623344 (in Chinese). | |
74 | 陈钱, 白鹏, 李锋. 飞行器变后掠过程非定常气动特性形成机理[J]. 力学学报, 2013, 45(3): 307-313. |
CHEN Q, BAI P, LI F. Study on the formation mechanisms of unsteady aerodynamic characteristics of morphing flight vehicle in sweep-varying process[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 307-313 (in Chinese). | |
75 | 马文风. 高超声速变形飞行器建模与纵向鲁棒控制方法研究[D]. 长沙: 国防科技大学, 2017. |
MA W F. Research on modeling and longitudinal robust control methods for hypersonic morphing aircrafts[D]. Changsha: National University of Defense Technology, 2017 (in Chinese). | |
76 | 殷明. 变体飞行器变形与飞行的协调控制问题研究[D]. 南京: 南京航空航天大学, 2016. |
YIN M. Coordinated control of deformation and flight for morphing aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese). | |
77 | 李文成. 变体飞行器动力学建模与稳定性分析及控制[D]. 南京: 南京航空航天大学, 2018. |
LI W C. Dynamics modeling, stability analysis and control of morphing aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). |
[1] | 李广佳, 王红波, 张凯, 仪志胜. 临近空间太阳能无人机增升减阻技术综述[J]. 航空学报, 2024, 45(5): 529644-529644. |
[2] | 杨晓飞, 孙太璐, 孟德君, 尹海宝, 王咏梅. 兼顾多模式的核心机驱动风扇级气动设计方法[J]. 航空学报, 2024, 45(2): 128625-128625. |
[3] | 李春鹏, 钱战森, 孙侠生. 远程民机变弯度机翼后缘外形变形矩阵气动设计[J]. 航空学报, 2023, 44(7): 127335-127335. |
[4] | 王晓峰, 屈峰, 付俊杰, 王泽宇, 刘超宇, 白俊强. 基于离散伴随的高超内转式进气道气动优化设计[J]. 航空学报, 2023, 44(19): 128352-128352. |
[5] | 李昊歌, 杨华, 杨雨欣, 陈伟芳. 高超声速升力体迎风面精细化降热优化设计[J]. 航空学报, 2022, 43(S2): 124-137. |
[6] | 王一雯, 兰夏毓, 史亚云, 华俊, 白俊强, 周铸. 考虑吸气影响的层流翼型梯度优化设计[J]. 航空学报, 2022, 43(11): 527323-527323. |
[7] | 冉茂鹏, 王成才, 刘华华, 王薇, 吕金虎. 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022, 43(10): 527449-527449. |
[8] | 左光, 艾邦成. 先进空间运输系统气动设计综述[J]. 航空学报, 2021, 42(2): 624077-624077. |
[9] | 张弘志, 宋笔锋, 孙中超, 汪亮. 扑翼飞行器驱动机构回顾与展望[J]. 航空学报, 2021, 42(2): 24024-024024. |
[10] | 孙俊峰, 周铸, 黄勇, 庞宇飞, 卢风顺, 许勇. 通用飞行器气动优化设计数字化集成平台——DIPasda[J]. 航空学报, 2020, 41(5): 623348-623348. |
[11] | 罗佳奇, 杨婧. 基于伴随方法的单级低速压气机气动设计优化[J]. 航空学报, 2020, 41(5): 623368-623368. |
[12] | 李润泽, 张宇飞, 陈海昕. 超临界机翼多目标气动优化设计的策略与方法[J]. 航空学报, 2020, 41(5): 623409-623409. |
[13] | 宋超, 李伟斌, 周铸, 刘红阳, 蓝庆生. 基于流形结构重建的多目标气动优化算法[J]. 航空学报, 2020, 41(5): 623687-623687. |
[14] | 马东立, 张良, 杨穆清, 夏兴禄, 王少奇. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3): 623418-623418. |
[15] | 罗佳奇, 陈泽帅, 曾先. 考虑几何设计参数不确定性影响的涡轮叶栅稳健性气动设计优化[J]. 航空学报, 2020, 41(10): 123826-123826. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学