航空学报 > 2023, Vol. 44 Issue (20): 128503-128503   doi: 10.7527/S1000-6893.2023.28503

基于振荡式涡流发生器的激波/边界层干扰控制方法

王梦格1,2, 何小明1(), 王娟娟3, 张悦1,2, 汪昆1, 谭慧俊1, 李留刚4   

  1. 1.南京航空航天大学 能源与动力学院,南京  210016
    2.中国空气动力研究与发展中心 跨流域空气动力学重点实验室,绵阳  621000
    3.中国航发四川燃气涡轮研究院 高空模拟技术重点实验室,绵阳  621000
    4.空间物理重点实验室,北京  100076
  • 收稿日期:2023-02-01 修回日期:2023-02-21 接受日期:2023-04-13 出版日期:2023-10-25 发布日期:2023-04-21
  • 通讯作者: 何小明 E-mail:70203999@nuaa.edu.cn
  • 基金资助:
    南京航空航天大学科研与实践创新计划资助(xcxjh20220203);跨流域空气动力学重点实验室开放基金资助(LLYSYS-KFJJ-ZD-2022-02);国家自然基金(12025202);江苏省科协青年科技人才托举工程(TJ-2021-052)

Shock wave/boundary layer interaction control method based on oscillating vortex generator

Mengge WANG1,2, Xiaoming HE1(), Juanjuan WANG3, Yue ZHANG1,2, Kun WANG1, Huijun TAN1, Liugang LI4   

  1. 1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing  210016,China
    2.Laboratory of Aerodynamics in Multiple Flow Regimes,China Aerodynamics Research and Development Center,Mianyang  621000,China
    3.Key Laboratory of High-Altitude Simulation Technology,Sichuan Gas Turbine Establishment of Aero Engine Corporation of China,Mianyang  621000,China
    4.Key Laboratory of Space Physics,Beijing  100076
  • Received:2023-02-01 Revised:2023-02-21 Accepted:2023-04-13 Online:2023-10-25 Published:2023-04-21
  • Contact: Xiaoming HE E-mail:70203999@nuaa.edu.cn
  • Supported by:
    Postgraduate Research & Practice Innovatio Program of NUAA(xcxjh20220203);Supported by the Open Fund from Laboratory of Aerodynamics in Multiple Flow Regimes(LLYSYS-KFJJ-ZD-2022-02);National Natural Science Foundation of China(12025202);Young Scientific and Technological Talents Project of Jiangsu Association for Science and Technology(TJ-2021-052)

摘要:

激波/边界层干扰(Shock Wave/Boundary Layer Interaction, SWBLI)是高超声速进气道中常见的流动现象,当其诱导边界层发生显著分离时往往会导致进气道气动性能严重下降。为此,本文提出了一种基于新型振荡式涡流发生器阵列的SWBLI控制方法,采用基于动网格技术的非定常仿真方法对该涡流发生器阵列流场进行了研究,验证了该控制方法的有效性,并研究了相关参数的影响规律。研究结果表明,振荡式涡流发生器可在超声速边界层内诱导产生振荡强度可变的涡系结构,增强了边界层流动与高速主流的掺混,同时该涡流发生器振荡过程中独特的“挤压”“抽吸”效应持续对气流进行充能,边界层内速度分布饱满程度显著增加。在控制效果方面,随着涡流发生器振荡频率增加,其对边界层低速气流充能的效果增强,对SWBLI流场的控制效果更加明显,形状因子最高可以降低28%;当激波入射在涡流发生器下游34hv时(其中hv为振荡式涡流发生器最大高度),控制效果最佳,激波诱导边界层分离区长度相比无控制时可减少25%;在涡流发生器下游x=270 mm处截取高度30 mm(z=30 mm)设置为监控面,相比于定几何涡流发生器,监控面总压恢复系数提升5%,马赫数提升2.4%。

关键词: 振荡型涡流发生器, 激波/边界层干扰, 动态网格仿真, 旋涡, 流动控制

Abstract:

Shock Wave/Boundary Layer Interaction (SWBLI) is a common flow phenomenon in high speed inlet. SWBLI-induced significant boundary layer separation often leads to a serious decline in inlet aerodynamic performance. Therefore, a shock wave/boundary layer interaction control method based on a novel oscillating vortex generator array is proposed in this paper. The flow field of oscillating vortex generator array is studied with a simulation method based on the dynamic grid technology. The effectiveness of the method is tested and the influence law of related parameters studied. The results show that the oscillating vortex generator can induce the vortex system structure with variable oscillation intensity in the supersonic boundary layer, enhancing the mixing effect of the flow and high-speed mainstream in the boundary layer. Meanwhile, the unique “extrusion” and “suction” characteristics of the vortex generator in the oscillation process continue to charge the airflow, and the velocity distribution in the boundary layer is significantly increased. In terms of SWBLI control, with the increase of oscillation frequency of the vortex generator, its charging effect on the low-speed airflow in the boundary layer is enhanced, and its control effect on the SWBLI flow field is more obvious, and the shape factor can be reduced by up to 28%. When the shock wave incident is at 34hv downstream of the vortex generator (where hv is the maximum height of the vortex generator), the control effect of the oscillating vortex generator array is the best, and the length of the separation zone can be reduced by 25% compared with that without the vortex generator control. A height of 30 mm (z=30 mm) is intercepted at x=270 mm downstream of the vortex generator and set as the monitoring surface. Compared with the fixed geometry vortex generator, the total pressure recovery coefficient and Mach number are increased by 5% and 2.4%, respectively.

Key words: oscillating vortex generator, shock wave/boundary layer interactions, dynamic grid simulation, spiral, flow control

中图分类号: