航空学报 > 2023, Vol. 44 Issue (20): 128430-128430   doi: 10.7527/S1000-6893.2023.28430

等离子体合成射流主动控制平面叶栅叶片流致振动

刘汝兵1,2(), 陈泽帆1,2, 林瑞鑫1, 林麒1,2   

  1. 1.厦门大学 航空航天学院,厦门 361102
    2.福建省等离子体与磁共振研究重点实验室,厦门 361102
  • 收稿日期:2022-12-26 修回日期:2023-01-12 接受日期:2023-02-22 出版日期:2023-10-25 发布日期:2023-03-03
  • 通讯作者: 刘汝兵 E-mail:lrb@xmu.edu.cn
  • 基金资助:
    中央高校基本科研业务费专项资金(20720210050);国家自然科学基金(51707169);中国航空发动机集团产学研合作项目(HFZL2018CXY009);航空动力基金(6141B09050390)

Active control of flow-induced vibration of blades in a plane cascade by a plasma synthetic jet

Rubing LIU1,2(), Zefan CHEN1,2, Ruixin LIN1, Qi LIN1,2   

  1. 1.School of Aerospace Engineering,Xiamen University,Xiamen 361102,China
    2.Fujian Key Laboratory of Plasma and Magnetic Resonance Research,Xiamen 361102,China
  • Received:2022-12-26 Revised:2023-01-12 Accepted:2023-02-22 Online:2023-10-25 Published:2023-03-03
  • Contact: Rubing LIU E-mail:lrb@xmu.edu.cn
  • Supported by:
    Fundamental Research Funds for the Central Universities of China(20720210050);National Natural Science Foundation of China(51707169);Project on the Integration of Industry, Education and Research of Aero Engine Corporation of China(HFZL2018CXY009);Aeroengine Science Foundation of China(6141B09050390)

摘要:

压气机转子叶片的叶尖间隙泄漏涡是造成其振动故障的重要诱因。为抑制叶尖间隙泄漏涡诱发的叶片振动强度,通过平面叶栅风洞试验,捕捉叶片振动现象,分析振动模态特征,测量叶尖间隙涡的流动结构。进而,利用等离子体合成射流主动控制叶尖间隙泄漏涡,抑制叶片流致振动强度,并探究了不同射流布局和激励频率的控制效果,厘清了控制机理。研究结果表明:在来流速度为30 m/s,叶片安装角为15°时,叶片发生了共振。叶尖间隙泄漏涡沿流向0.25及0.50倍弦长横截面为等离子体合成射流主动控制关键位置。在0.50倍弦长截面,相较于朝叶尖端面和叶背喷射,朝叶盆方向喷射的等离子体合成射流控制振动的效果最佳。在激励频率为220 Hz时,减小叶片振动应力达31.6%。其控制机理是等离子体合成射流干预了叶尖间隙泄漏流的启动,减小了叶片压力面和吸力面的压力梯度,抑制了叶尖泄漏涡的形成和发展,从而降低了泄漏涡的强度,减小了诱发叶片振动的激振力。

关键词: 压气机, 转子叶片, 流致振动, 等离子体合成射流, 叶尖间隙泄漏涡, 粒子图像测速仪

Abstract:

The tip gap leakage vortex of the compressor rotor blade is an important cause of its vibration failure. To suppress the blade vibration intensity induced by tip clearance leakage vortex, through the planar blade grid wind tunnel test, the blade vibration phenomenon is captured. The vibration mode characteristics are analyzed, and the flow structure of the blade tip gap vortex is measured. Then, the plasma synthesis jet is used to actively control the leakage vortex between blade tips and suppress the vibration caused by the blade. The control effects of different jet layouts and excitation frequencies are explored, and the control mechanism is clarified. The results show that when the incoming flow velocity is 30 m/s and the blade installation angle is 15°, blade resonance occurs. The interstitial leakage vortex of the tip gap flows 0.25 and 0.50 times the chord length cross-section, which is the key position for active control of the plasma synthesis jet. At 0.50 times the chord length cross-section, plasma synthetic jets sprayed in the direction of the blade basin control vibration best compared to the spraying towards the tip and back of the leaf. At the excitation frequency of 220 Hz, the vibration stress of the blade is reduced by 31.6%. The control mechanism is that the plasma synthesis jet intervenes in the initiation of the leakage flow between the blade tip, reduces the pressure gradient of the blade pressure surface and the suction surface, inhibits the formation and development of the tip leakage vortex, thereby reducing the strength of the leakage vortex and reducing the excitation force that induces blade vibration.

Key words: compressor, rotor blade, flow-induced vibration, plasma synthetic jet, tip leakage vortex, particle image velocimetry

中图分类号: