[1]Hassanalian, Mand A. Abdelkefi,.Classifications, applications, and design challenges of drones: A re-view. Progress in Aerospace Sciences, 2017. 91: 99-131.[2] Tiomkin, S.and D.E. Raveh, A review of membrane-wing aeroelasticity. Progress in Aerospace Sciences, 2021. 126: 376-421[3] Tiomkin, S.and D.E. Raveh, On membrane-wing stability in laminar flow. Journal of Fluids and Struc-tures, 2019. 91: 102694[4] Thwaites, B.and G.F.J. Temple, The aerodynamic theory of sails. I. Two-dimensional sails. Proceedings of the Royal Society of London. Series A. Mathemat-ical and Physical Sciences, 1961. 261(1306): 402-422.[5] Nielsen, J.N., Theory of Flexible Aerodynamic Surfac-es. Journal of Applied Mechanics, 1963. 30(3): 435-442.[6] Vanden‐Broeck, J.M., Nonlinear two‐dimensional sail theory. The Physics of Fluids, 1982. 25(3):420-423.[7] Smith, R.and W. Shyy, Computational model of flexi-ble membrane wings in steady laminar flow. AIAA Journal, 1995. 33(10): 1769-1777.[8] Smith, R.and W. Shyy, Computation of aerodynamic coefficients for a flexible membrane airfoil in turbu-lent flow: A comparison with classical theory. Physics of Fluids, 1996. 8(12): 3346-3353.[9] Gordnier, R.E., High fidelity computational simulation of a membrane wing airfoil. Journal of Fluids and Structures, 2009. 25(5): 897-917.[10] Song, A., et al., Aeromechanics of Membrane Wings with Implications for Animal Flight. AIAA Journal, 2008. 46(8): 2096-2106.[11] Rojratsirikul, P., Z. Wang, and I. Gursul, Unsteady fluid–structure interactions of membrane airfoils at low Reynolds numbers. Experiments in Fluids, 2009. 46(5): 859-872.[12] Rojratsirikul, P., Z. Wang, and I. Gursul, Effect of pre-strain and excess length on unsteady fluid–structure interactions of membrane airfoils. Journal of Fluids and Structures, 2010. 26(3): 359-376.[13] Sun, X., et al., Experimental Study of Aerodynamic Characteristics of Partially Flexible NACA0012 Air-foil. AIAA Journal, 2022. 60(9): 5386-5400.[14] Taira, K., et al., Modal Analysis of Fluid Flows: An Overview. AIAA Journal, 2017. 55(12): 4013-4041.[15] Taira, K., et al., Modal Analysis of Fluid Flows: Ap-plications and Outlook. AIAA Journal, 2020. 58(3): 998-1022.[16] Schmid, P.J., Dynamic mode decomposition of nu-merical and experimental data. Journal of Fluid Me-chanics, 2010. 656: 5-28.[17] Schmid, P.J., Dynamic Mode Decomposition and Its Variants. Annual Review of Fluid Mechanics, 2022. 54(1): 225-254.[18] Zhong J, Li J, Liu H.Analysis of dynamic stall con-trol on a pitching airfoil using dynamic mode de-composition. Proceedings of the Institution of Me-chanical Engineers, Part A: Journal of Power and En-ergy. 2023; 0(0).[19] Ming Zhao, Lianchao Xu, Xiaojian Li, Yijia Zhao, Zhengxian Liu; Dynamic stall of pitching tubercled wings in vortical wake flowfield.Physics of Fluids 1 January 2023; 35 (1): 015122.[20] 叶坤,武洁,叶正寅等., 动力学模态分解和本征正交分解对圆柱绕流稳定性的分析. 西北工业大学学报. 2017. 35(04): 599-607.(Ye Kun,Wu Jie,Ye Zhengyin et al. Analysis Circular Cylinder Flow Us-ing Dynamic Mode and Proper Orthogonal Decom-position. Journal of Northwestern Polytechnical Uni-versity. 2017. 35(04): 599-607.)[21] W.Stankiewicz. Recursive Dynamic Mode Decom-position for the flow around two square cylinders in tandem configuration. Journal of Fluids and Struc-tures, 2022, 110: 103515[22] Huahai Zhang, Longfei Jia, Shaotong Fu, Xing Xiang, Limin Wang; Vortex shedding analysis of flows past forced-oscillation cylinder with dynamic mode decomposition.Physics of Fluids 1 May 2023; 35 (5): 053618.[23] Ming Zhao, Lianchao Xu, Xiaojian Li, Yijia Zhao, Zhengxian Liu; Dynamic stall of pitching tubercled wings in vortical wake flowfield.Physics of Fluids 1 January 2023; 35 (1): 015122.[24] Wu, Y., et al., Analysis of low-order modal coherent structures in cavitation flow field based on dynamic mode decomposition and finite-time Lyapunov expo-nent. Physics of Fluids, 2023. 35(8): 085110[25] WEINER A, SEMAAN R.Robust Dynamic Mode Decomposition Methodology for an Airfoil Undergo-ing Transonic Shock Buffet. AIAA Journal, 2023: 1-12.[26]寇家庆, 张伟伟, 高传强.基于和方法的跨声速抖振模态分析[J].航空学报, . : -., , . ., 2016, 37(9):2679-2689[27] Poplingher, L.and D.E. Raveh, Comparative Modal Study of the Two-Dimensional and Three-Dimensional Transonic Shock Buffet. AIAA JOURNAL, 2023. 61(1): 125-144.[28] Iyer, P.S. and K. Mahesh, A numerical study of shear layer characteristics of low-speed transverse jets. Vol. 790. 2016: 275-307.[29] Motheau, E., F. Nicoud, and T. Poinsot, Mixed acous-tic–entropy combustion instabilities in gas turbines. Journal of Fluid Mechanics, 2014. 749: 542-576.[30]康伟, 胡仕林, 王彦清.介电弹性薄膜翼型的增升效应机理[J].航空学报, 2023, 44(18):112-23[31] Tissot, G., et al., Model reduction using Dynamic Mode Decomposition. Comptes Rendus Mécanique, 2014. 342(6-7): 410-416.[32] Rojratsirikul, P., et al., Flow-induced vibrations of low aspect ratio rectangular membrane wings. Jour-nal of Fluids and Structures, 2011. 27(8): 1296-1309. |