1 |
HASSANALIAN M, ABDELKEFI A. Classifications, applications, and design challenges of drones: A review[J]. Progress in Aerospace Sciences, 2017, 91: 99-131.
|
2 |
TIOMKIN S, RAVEH D E. A review of membrane-wing aeroelasticity[J]. Progress in Aerospace Sciences, 2021, 126: 100738.
|
3 |
TIOMKIN S, RAVEH D E. On membrane-wing stability in laminar flow[J]. Journal of Fluids and Structures, 2019, 91: 102694.
|
4 |
THWAITES B. The aerodynamic theory of sails. I. Two-dimensional sails[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1961, 261(1306): 402-422.
|
5 |
NIELSEN J N. Theory of flexible aerodynamic surfaces[J]. Journal of Applied Mechanics, 1963, 30(3): 435-442.
|
6 |
VANDEN-BROECK J M. Nonlinear two-dimensional sail theory[J]. Physics of Fluids, 1982, 25(3): 420-423.
|
7 |
SMITH R, SHYY W. Computational model of flexible membrane wings in steady laminar flow[J]. AIAA Journal, 1995, 33(10): 1769-1777.
|
8 |
SMITH R, SHYY W. Computation of aerodynamic coefficients for a flexible membrane airfoil in turbulent flow: A comparison with classical theory[J]. Physics of Fluids, 1996, 8(12): 3346-3353.
|
9 |
GORDNIER R. High fidelity computational simulation of a membrane wing airfoil[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 614.
|
10 |
SONG A, TIAN X D, ISRAELI E, et al. Aeromechanics of membrane wings with implications for animal flight[J]. AIAA Journal, 2008, 46(8): 2096-2106.
|
11 |
ROJRATSIRIKUL P, WANG Z, GURSUL I. Unsteady fluid-structure interactions of membrane airfoils at low Reynolds numbers[J]. Experiments in Fluids, 2009, 46(5): 859-872.
|
12 |
ROJRATSIRIKUL P, WANG Z, GURSUL I. Effect of pre-strain and excess length on unsteady fluid-structure interactions of membrane airfoils[J]. Journal of Fluids and Structures, 2010, 26(3): 359-376.
|
13 |
SUN X J, ZHANG X Y, SU Z A, et al. Experimental study of aerodynamic characteristics of partially flexible NACA0012 airfoil[J]. AIAA Journal, 2022, 60(9): 5386-5400.
|
14 |
TAIRA K, BRUNTON S L, DAWSON S T M, et al. Modal analysis of fluid flows: An overview[J]. AIAA Journal, 2017, 55(12): 4013-4041.
|
15 |
TAIRA K, HEMATI M S, BRUNTON S L, et al. Modal analysis of fluid flows: Applications and outlook[J]. AIAA Journal, 2019, 58(3): 998-1022.
|
16 |
SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656: 5-28.
|
17 |
SCHMID P J. Dynamic mode decomposition and its variants[J]. Annual Review of Fluid Mechanics, 2022, 54: 225-254.
|
18 |
ZHONG J W, LI J Y, LIU H Z. Analysis of dynamic stall control on a pitching airfoil using dynamic mode decomposition[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2023, 237(8): 1699-1714.
|
19 |
ZHAO M, XU L C, LI X J, et al. Dynamic stall of pitching tubercled wings in vortical wake flowfield[J]. Physics of Fluids, 2023, 35(1): 015122.
|
20 |
叶坤, 武洁, 叶正寅, 等. 动力学模态分解和本征正交分解对圆柱绕流稳定性的分析[J]. 西北工业大学学报, 2017, 35(4): 599-607.
|
|
YE K, WU J, YE Z Y, et al. Anslysis circular cylinder flow using dynamic mode and proper orthogonal decomposition[J]. Journal of Northwestern Polytechnical University, 2017, 35(4): 599-607 (in Chinese).
|
21 |
STANKIEWICZ W. Recursive dynamic mode decomposition for the flow around two square cylinders in tandem configuration[J]. Journal of Fluids and Structures, 2022, 110: 103515.
|
22 |
ZHANG H H, JIA L F, FU S T, et al. Vortex shedding analysis of flows past forced-oscillation cylinder with dynamic mode decomposition[J]. Physics of Fluids, 2023, 35(5): 053618.
|
23 |
FELDHUSEN-HOFFMANN A, LAGEMANN C, LOOSEN S, et al. Analysis of transonic buffet using dynamic mode decomposition[J]. Experiments in Fluids, 2021, 62(4): 66.
|
24 |
WU Y Z, TAO R, YAO Z F, et al. Analysis of low-order modal coherent structures in cavitation flow field based on dynamic mode decomposition and finite-time Lyapunov exponent[J]. Physics of Fluids, 2023, 35(8): 085110.
|
25 |
WEINER A, SEMAAN R. Robust dynamic mode decomposition methodology for an airfoil undergoing transonic shock buffet[J]. AIAA Journal, 2023, 61(10): 4456-4467.
|
26 |
寇家庆, 张伟伟, 高传强. 基于POD和DMD方法的跨声速抖振模态分析[J]. 航空学报, 2016, 37(9): 2679-2689.
|
|
KOU J Q, ZHANG W W, GAO C Q. Modal analysis of transonic buffet based on POD and DMD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9): 2679-2689 (in Chinese).
|
27 |
POPLINGHER L, RAVEH D E. Comparative modal study of the two-dimensional and three-dimensional transonic shock buffet[J]. AIAA Journal, 2023, 61(1): 125-144.
|
28 |
IYER P S, MAHESH K. A numerical study of shear layer characteristics of low-speed transverse jets[J]. Journal of Fluid Mechanics, 2016, 790: 275-307.
|
29 |
MOTHEAU E, NICOUD F, POINSOT T. Mixed acoustic-entropy combustion instabilities in gas turbines[J]. Journal of Fluid Mechanics, 2014, 749: 542-576.
|
30 |
康伟, 胡仕林, 王彦清. 介电弹性薄膜翼型的增升效应机理[J]. 航空学报, 2023, 44(18): 107-118.
|
|
KANG W, HU S L, WANG Y Q. Lift enhancement mechanism of dielectric elastic membrane airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 107-118 (in Chinese).
|
31 |
KANG W, HU S L, WANG Y Q. Lift enhancement mechanism study of the airfoil with a dielectric elastic membrane skin[J]. Journal of Fluids and Structures, 2024, 125: 104083.
|
32 |
TISSOT G, CORDIER L, BENARD N, et al. Model reduction using Dynamic Mode Decomposition[J]. Comptes Rendus Mécanique, 2014, 342(6-7): 410-416.
|
33 |
ROJRATSIRIKUL P, GENC M S, WANG Z, et al. Flow-induced vibrations of low aspect ratio rectangular membrane wings[J]. Journal of Fluids and Structures, 2011, 27(8): 1296-1309.
|