[1] 国义军, 石卫波, 曾磊. 高超声速飞行器烧蚀防热理论与应用[M].北京: 科学出版社, 2019: 1-10. GUO Y J, SHI W B, ZENG L. Mechanism of ablative thermal protection applied to hypersonic vehicles[M].Beijing: Science Press, 2019: 1-10 (in Chinese). [2] 国义军, 代光月, 桂业伟, 等. 碳基材料氧化烧蚀的双平台理论和反应控制机理[J]. 空气动力学学报, 2014, 32(6): 755-760. GUO Y J, DAI G Y, GUI Y W, et al. A dual platform theory for carbon-based material oxidation with reaction-diffusion rate controlled kinetics[J]. Acta Aerodynamica Sinica, 2014, 32(6): 755-760 (in Chinese). [3] CHARRU F, ANDREOTTI B, CLAUDIN P. Sand ripples and dunes[J]. Annual Review of Fluid Mechanics, 2013, 45: 469-493. [4] KIDANEMARIAM A G, UHLMANN M. Direct numerical simulation of pattern formation in subaqueous sediment[J]. Journal of Fluid Mechanics, 2014, 750: R2. [5] 刘朋欣, 袁先旭, 孙东, 等. 高温化学非平衡湍流边界层直接数值模拟[J/OL]. 航空学报, (2020-11-13)[2020-11-16]. http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.24877 LIU P X, YUAN X X, SUN D, et al. DNS of high temperature non-equibrilium turbulent boundary layer[J/OL]. Acta Aeronautica et Astronautica Sinica, (2020-11-13)[2020-11-16]. http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.24877 (in Chinese). [6] LIU P X, LI Q, HUANG Z F, et al. Interpretation of wake instability at slip line in rotating detonation[J]. International Journal of Computational Fluid Dynamics, 2018, 32(8-9): 379-394. [7] 吴望一. 流体力学[M].北京: 北京大学出版社, 1983: 440-447. WU W Y. Fluid mechanics[M].Beijing: Peking University Press, 1983: 440-447 (in Chinese). [8] LOBB R K. Experimental measurement of shock detachment distance on spheres fired in air at hypervelocities[M]//AGARDograph. Amsterdam: Elsevier, 1964: 519-527. [9] SINCLAIR J, CUI X. A theoretical approximation of the shock standoff distance for supersonic flows around a circular cylinder[J]. Physics of Fluids, 2017, 29(2): 026102. [10] OLIVIER H. A theoretical model for the shock stand-off distance in frozen and equilibrium flows[J]. Journal of Fluid Mechanics, 2000, 413: 345-353. [11] HORNUNG H G. Non-equilibrium dissociating nitrogen flow over spheres and circular cylinders[J]. Journal of Fluid Mechanics, 1972, 53(1): 149-176. [12] WEN C Y, HORNUNG H G. Non-equilibrium dissociating flow over spheres[J]. Journal of Fluid Mechanics, 1995, 299: 389-405. [13] VIGOLO D, GRIFFITHS I M, RADL S, et al. An experimental and theoretical investigation of particle-wall impacts in a T-junction[J]. Journal of Fluid Mechanics, 2013, 727: 236-255. [14] LI Q, ABBAS M, MORRIS J F, et al. Near-wall dynamics of a neutrally buoyant spherical particle in an axisymmetric stagnation point flow[J]. Journal of Fluid Mechanics, 2020, 892: A32. [15] LI Q, ABBAS M, MORRIS J F. Particle approach to a stagnation point at a wall: Viscous damping and collision dynamics[J]. Physical Review Fluids, 2020, 5(10): 104301. [16] LI Q. Near-wall dynamics of neutrally buoyant particles in a wall-normal flow: From viscous damping to collision[D].Toulouse: INP Toulouse, 2019. [17] WHITE F M. Viscous fluid flow[M].3rd ed. Boston: McGraw-Hill, 2006. [18] BRADSHAW P. Compressible turbulent shear layers[J]. Annual Review of Fluid Mechanics, 1977, 9: 33-52. [19] COLEMAN G N, KIM J, MOSER R D. A numerical study of turbulent supersonic isothermal-wall channel flow[J]. Journal of Fluid Mechanics, 1995, 305: 159-183. [20] ZHANG C, DUAN L, CHOUDHARI M M. Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers[J]. AIAA Journal, 2018, 56(11): 4297-4311. [21] ZHENG X J, BO T L, ZHU W. A scale-coupled method for simulation of the formation and evolution of aeolian dune field[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2009, 10(3): 387-395. [22] SAFFMAN P G. The lift on a small sphere in a slow shear flow[J]. Journal of Fluid Mechanics, 1965, 22(2): 385-400. [23] LEGENDRE D, MAGNAUDET J. The lift force on a spherical bubble in a viscous linear shear flow[J]. Journal of Fluid Mechanics, 1998, 368: 81-126. [24] MAGNAUDET J. Small inertial effects on a spherical bubble, drop or particle moving near a wall in a time-dependent linear flow[J]. Journal of Fluid Mechanics, 2003, 485: 115-142. [25] ZHOU Q, FAN L S. Direct numerical simulation of moderate-Reynolds-number flow past arrays of rotating spheres[J]. Physics of Fluids, 2015, 27(7): 073306. [26] ZHOU Q, FAN L S. Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres[J]. Journal of Fluid Mechanics, 2015, 765: 396-423. [27] GLOWINSKI R, PAN T W, PERIAUX J. A fictitious domain method for Dirichlet problem and applications[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 111(3-4): 283-303. [28] GLOWINSKI R, PAN T W, HESLA T I, et al. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow[J]. Journal of Computational Physics, 2001, 169(2): 363-426. [29] YU Z S, SHAO X M, WACHS A. A fictitious domain method for particulate flows[J]. Journal of Hydrodynamics, Ser B, 2006, 18(3): 482-486. [30] XIA Y, XIONG H B, YU Z S, et al. Effects of the collision model in interface-resolved simulations of particle-laden turbulent channel flows[J]. Physics of Fluids, 2020, 32(10): 103303. [31] AUTON T R, HUNT J C R, PRUD’HOMME M. The force exerted on a body in inviscid unsteady non-uniform rotational flow[J]. Journal of Fluid Mechanics, 1988, 197: 241-257. [32] BASSET A B. A treatise on hydrodynamics. Vol. 2[M].[S.l.]: Dover, 1888. [33] LOVALENTI P M, BRADY J F. The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number[J]. Journal of Fluid Mechanics, 1993, 256: 561-605. [34] LOVALENTI P M, BRADY J F. The force on a bubble, drop, or particle in arbitrary time-dependent motion at small Reynolds number[J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(9): 2104-2116. [35] MEI R W, ADRIAN R J. Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number[J]. Journal of Fluid Mechanics, 1992, 237: 323-341. [36] LIGHTHILL M J. The response of laminar skin friction and heat transfer to fluctuations in the stream velocity[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1954, 224(1156): 1-23. [37] ACKERBERG R C, PHILLIPS J H. The unsteady laminar boundary layer on a semi-infinite flat plate due to small fluctuations in the magnitude of the free-stream velocity[J]. Journal of Fluid Mechanics, 1972, 51(1): 137-157. [38] LEGENDRE D, RACHIH A, SOUILLIEZ C, et al. Basset-Boussinesq history force of a fluid sphere[J]. Physical Review Fluids, 2019, 4(7): 073603. [39] CAFLISCH R E, LUKE J H C. Variance in the sedimentation speed of a suspension[J]. The Physics of Fluids, 1985, 28(3): 759-760. [40] KOCH D L, SHAQFEH E S G. Screening in sedimenting suspensions[J]. Journal of Fluid Mechanics, 1991, 224: 275-303. [41] MAGNAUDET J, RIVERO M, FABRE J. Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow[J]. Journal of Fluid Mechanics, 1995, 284: 97-135. [42] BAGCHI P, BALACHANDAR S. Inertial and viscous forces on a rigid sphere in straining flows at moderate Reynolds numbers[J]. Journal of Fluid Mechanics, 2003, 481: 105-148. [43] SEGRÉ G, SILBERBERG A. Behaviour of macroscopic rigid spheres in Poiseuille flow Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams[J]. Journal of Fluid Mechanics, 1962, 14(1): 115-135. [44] SEGRÉ G, SILBERBERG A. Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation[J]. Journal of Fluid Mechanics, 1962, 14(1): 136-157. [45] O’NEILL M E, STEWARTSON K. On the slow motion of a sphere parallel to a nearby plane wall[J]. Journal of Fluid Mechanics, 1967, 27(4): 705-724. [46] HO B P, LEAL L G. Inertial migration of rigid spheres in two-dimensional unidirectional flows[J]. Journal of Fluid Mechanics, 1974, 65(2): 365-400. [47] VASSEUR P, COX R G. The lateral migration of a spherical particle in two-dimensional shear flows[J]. Journal of Fluid Mechanics, 1976, 78(2): 385-413. [48] LEGENDRE D, MAGNAUDET J. A note on the lift force on a spherical bubble or drop in a low-Reynolds-number shear flow[J]. Physics of Fluids, 1997, 9(11): 3572-3574. [49] LEE H, BALACHANDAR S. Drag and lift forces on a spherical particle moving on a wall in a shear flow at finite Re[J]. Journal of Fluid Mechanics, 2010, 657: 89-125. [50] MASOUD H, STONE H A. The reciprocal theorem in fluid dynamics and transport phenomena[J]. Journal of Fluid Mechanics, 2019, 879: P1. [51] HORWITZ J A K, MANI A. Accurate calculation of Stokes drag for point-particle tracking in two-way coupled flows[J]. Journal of Computational Physics, 2016, 318: 85-109. [52] HORWITZ J A K. Verifiable point-particle methods for two-way coupled particle-laden flows[D].Stanford: Stanford University, 2018. [53] YICK K Y, TORRES C R, PEACOCK T, et al. Enhanced drag of a sphere settling in a stratified fluid at small Reynolds numbers[J]. Journal of Fluid Mechanics, 2009, 632: 49-68. [54] ZHANG J, MERCIER M J, MAGNAUDET J. Core mechanisms of drag enhancement on bodies settling in a stratified fluid[J]. Journal of Fluid Mechanics, 2019, 875: 622-656. [55] DA ROCHA D, PAETZOLD E, KANSWOHL N. The shrinking core model applied on anaerobic digestion[J]. Chemical Engineering and Processing: Process Intensification, 2013, 70: 294-300. [56] LUO K, MAO C L, FAN J R, et al. Fully resolved simulations of single char particle combustion using a ghost-cell immersed boundary method[J]. AIChE Journal, 2018, 64(7): 2851-2863. |