收稿日期:
2023-04-26
修回日期:
2023-05-30
接受日期:
2023-12-29
出版日期:
2024-07-15
发布日期:
2024-02-23
通讯作者:
廖文和
E-mail:cnwho@njust.edu.cn
基金资助:
Jing SHU, Wenhe LIAO(), Kan ZHENG, Song DONG, Lianjun SUN
Received:
2023-04-26
Revised:
2023-05-30
Accepted:
2023-12-29
Online:
2024-07-15
Published:
2024-02-23
Contact:
Wenhe LIAO
E-mail:cnwho@njust.edu.cn
Supported by:
摘要:
碳纤维复合材料因其轻量化、耐高温、耐腐蚀等优异性能在多种极端服役环境得到了广泛的应用,在航空航天装备中的占比逐年提升。旋转超声加工技术在提高碳纤维复合材料去除效率、减小切削力和改善加工质量等方面具有显著优势,是当前难加工材料制造领域的研究热点。近年来,国内外学者在碳纤维复合材料的旋转超声钻削、铣削和磨削等方面展开了大量的研究工作并取得了丰硕的成果,然而,不同加工方式下多种形式超声振动能量的摄入对其切削效果的影响机理存在显著差异。此外,针对多种碳纤维复合材料表面完整性和使役性能研究的深度和广度仍存在较大的提升空间。为此,对材料去除机理、切削特性、表面质量研究及实际工程应用的国内外文献进行了总结和凝练, 并展望了旋转超声加工碳纤维复合材料的发展趋势。
中图分类号:
束静, 廖文和, 郑侃, 董松, 孙连军. 旋转超声加工碳纤维复合材料研究现状与展望[J]. 航空学报, 2024, 45(13): 628939-628939.
Jing SHU, Wenhe LIAO, Kan ZHENG, Song DONG, Lianjun SUN. Review on rotary ultrasonic machining of carbon fiber composites[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 628939-628939.
表 1
旋转超声加工碳纤维复合材料切削力研究结果[13, 55-59]
振动形式 | 超声参数 | 加工方式 | 材料 | 研究结论 |
---|---|---|---|---|
轴向 | 频率:3.9 kHz, 振幅:5 μm | 铣削 | CFRP | 超声铣削进给力降低10%[ |
轴向 | 频率:32 kHz, 振幅:11 μm | 铣削 | CFRP | 超声铣削横向力降低61.5%、推力降低71.3%[ |
轴向 | 频率:43 kHz, 振幅:6.9 μm | 磨削 | CFRP | 超声铣削进给力降低20%[ |
水平 | 水平频率:28 kHz, 水平振幅:4 μm | 磨削 | CFRP | 普通加工、水平超声、椭圆超声加工引起的切削力依次降低[ |
椭圆 | 轴向频率:20 kHz, 轴向振幅:6 μm | 磨削 | CFRP | |
椭圆 | 频率:21.35 kHz, 振幅:8 μm | 钻削 | CFRP | 超声钻削力降低38%[ |
椭圆 | 频率:18.6 kHz, 振幅:20 μm | 钻削 | CFRP | 超声钻削力降低45%[ |
1 | ZHANG J, LIN G, VAIDYA U, et al. Past, present and future prospective of global carbon fibre composite developments and applications[J]. Composites Part B: Engineering, 2023, 250: 110463. |
2 | 史振宇, 崔鹏, 李鑫, 等. 基于纤维增强复合材料的超声振动辅助加工技术综述[J]. 表面技术, 2019, 48(1): 305-319. |
SHI Z Y, CUI P, LI X, et al. Overview of ultrasonic vibration assisted machining technology on fiber reinforced composites[J]. Surface Technology, 2019, 48(1): 305-319 (in Chinese). | |
3 | DU J G, GENG M, MING W Y, et al. Simulation machining of fiber-reinforced composites: A review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117(1): 1-15. |
4 | AN Q L, CHEN J, MING W W, et al. Machining of SiC ceramic matrix composites: A review[J]. Chinese Journal of Aeronautics, 2021, 34(4): 540-567. |
5 | 钟明建, 胡炜杰, 廖晓恬, 等. 碳纤维复合材料部件加工技术现状及发展趋势[J]. 复合材料科学与工程, 2022(5): 110-119. |
ZHONG M J, HU W J, LIAO X T, et al. Present situation and development trend of processing technology of carbon fiber composite parts[J]. Composites Science and Engineering, 2022(5): 110-119 (in Chinese). | |
6 | 冯平法, 王健健, 张建富, 等. 硬脆材料旋转超声加工技术的研究现状及展望[J]. 机械工程学报, 2017, 53(19): 3-21. |
FENG P F, WANG J J, ZHANG J F, et al. Research status and future prospects of rotary ultrasonic machining of hard and brittle materials[J]. Journal of Mechanical Engineering, 2017, 53(19): 3-21 (in Chinese). | |
7 | GAO T, ZHANG Y B, LI C H, et al. Fiber-reinforced composites in milling and grinding: Machining bottlenecks and advanced strategies[J]. Frontiers of Mechanical Engineering, 2022, 17(2): 24. |
8 | ASMAEL M, SAFAEI B, ZEESHAN Q, et al. Ultrasonic machining of carbon fiber–reinforced plastic composites: A review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(11): 3079-3120. |
9 | YANG Z C, ZHU L D, ZHANG G X, et al. Review of ultrasonic vibration-assisted machining in advanced materials[J]. International Journal of Machine Tools and Manufacture, 2020, 156: 103594. |
10 | LIU S L, CHEN T, WU C Q. Rotary ultrasonic face grinding of carbon fiber reinforced plastic (CFRP): A study on cutting force model[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(1): 847-856. |
11 | WANG H, HU Y B, CONG W L, et al. A mechanistic model on feeding-directional cutting force in surface grinding of CFRP composites using rotary ultrasonic machining with horizontal ultrasonic vibration[J]. International Journal of Mechanical Sciences, 2019, 155: 450-460. |
12 | WANG J J, FENG P F, ZHANG J F, et al. Reducing cutting force in rotary ultrasonic drilling of ceramic matrix composites with longitudinal-torsional coupled vibration[J]. Manufacturing Letters, 2018, 18: 1-5. |
13 | WANG H, HU Y B, CONG W L, et al. A novel investigation on horizontal and 3D elliptical ultrasonic vibrations in rotary ultrasonic surface machining of carbon fiber reinforced plastic composites[J]. Journal of Manufacturing Processes, 2020, 52: 12-25. |
14 | JIN M, MURAKAWA M. Development of a practical ultrasonic vibration cutting tool system[J]. Journal of Materials Processing Technology, 2001, 113(1-3): 342-347. |
15 | SHAO Z Y, JIANG X G, GENG D X, et al. The interface temperature and its influence on surface integrity in ultrasonic-assisted drilling of CFRP/Ti stacks[J]. Composite Structures, 2021, 266: 113803. |
16 | WANG H, PEI Z J, CONG W L. A feeding-directional cutting force model for end surface grinding of CFRP composites using rotary ultrasonic machining with elliptical ultrasonic vibration[J]. International Journal of Machine Tools and Manufacture, 2020, 152: 103540. |
17 | 向道辉, 牛肖肖, 李章东, 等. 超声辅助磨削淬硬42CrMo钢表面质量试验研究[J]. 河南理工大学学报(自然科学版), 2020, 39(5): 73-79. |
XIANG D H, NIU X X, LI Z D, et al. Experimental study on surface quality of hardened 42CrMo steel processed by ultrasound-assisted grinding[J]. Journal of Henan Polytechnic University (Natural Science), 2020, 39(5): 73-79 (in Chinese). | |
18 | MORIWAKI T, SHAMOTO E. Ultrasonic elliptical vibration cutting[J]. CIRP Annals, 1995, 44(1): 31-34. |
19 | 王晓. 一种三维超声振动加工装置设计与研究[D]. 天津: 天津理工大学, 2019: 1-32. |
WANG X. The design and research of a three dimensional ultrasonic vibration machining device[D].Tianjin: Tianjin University of Technology, 2019: 1-32 (in Chinese). | |
20 | 闫艳燕, 马千里, 张亚飞, 等. 纵扭超声辅助磨削氮化硅亚表面损伤及其试验研究[J]. 表面技术, 2023, 52(2): 55-66. |
YAN Y Y, MA Q L, ZHANG Y F, et al. Subsurface damage and experiment of silicon nitride by longitudinal torsional ultrasonic assisted grinding[J]. Surface Technology, 2023, 52(2): 55-66 (in Chinese). | |
21 | NIU Y, JIAO F, ZHAO B, et al. Investigation of cutting force in longitudinal-torsional ultrasonic-assisted milling of Ti-6Al-4V[J]. Materials, 2019, 12(12): 1955. |
22 | TANG X T, LIU Y X, SHI S J, et al. Development of a novel ultrasonic drill using longitudinal-bending hybrid mode[J]. IEEE Access, 2017, 5: 7362-7370. |
23 | WANG R Q, ZHOU X Q, MENG G W. Development of a new type of 2-DOF piezo-actuated pseudo-decoupled compliant mechanism for elliptical vibration machining[J]. Micromachines, 2019, 10(2): 122. |
24 | JIN X L, XIE B Y. Experimental study on surface generation in vibration-assisted micro-milling of glass[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(1): 507-512. |
25 | GENG D X, LU Z H, YAO G, et al. Cutting temperature and resulting influence on machining performance in rotary ultrasonic elliptical machining of thick CFRP[J]. International Journal of Machine Tools and Manufacture, 2017, 123: 160-170. |
26 | GENG D X, ZHANG D Y, XU Y G, et al. Rotary ultrasonic elliptical machining for side milling of CFRP: Tool performance and surface integrity[J]. Ultrasonics, 2015, 59: 128-137. |
27 | 李远霄, 焦锋, 张世杰, 等. 高低频复合振动钻削CFRP/钛合金叠层结构试验[J]. 航空学报, 2021, 42(10): 524802. |
LI Y X, JIAO F, ZHANG S J, et al. Experiment on high and low frequency compound vibration-assisted drilling of CFRP/titanium alloy laminated structure[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524802 (in Chinese). | |
28 | ZHANG C, SONG Y. Design and kinematic analysis of a novel decoupled 3D ultrasonic elliptical vibration assisted cutting mechanism[J]. Ultrasonics, 2019, 95: 79-94. |
29 | ZHANG C, SONG Y. A novel design method for 3D elliptical vibration-assisted cutting mechanism[J]. Mechanism and Machine Theory, 2019, 134: 308-322. |
30 | SHAMOTO E, SUZUKI N, HINO R. Analysis of 3D elliptical vibration cutting with thin shear plane model[J]. CIRP Annals, 2008, 57(1): 57-60. |
31 | 徐瑞玲, 赵波. 三维超声辅助磨削的表面质量研究[J]. 制造技术与机床, 2020(5): 102-105. |
XU R L, ZHAO B. Study on surface quality of three-dimensional ultrasound-assisted grinding[J]. Manufacturing Technology & Machine Tool, 2020(5): 102-105 (in Chinese). | |
32 | 徐锦泱. 碳纤维增强树脂基复合材料钻削缺陷研究进展[J]. 航空制造技术, 2022, 65(22): 24-33. |
XU J Y. Research advances in drilling-induced defects of carbon fiber reinforced polymers[J]. Aeronautical Manufacturing Technology, 2022, 65(22): 24-33 (in Chinese). | |
33 | 胡二娟. 超声铣削碳/碳复合材料铣削力研究[D]. 焦作: 河南理工大学, 2017: 10-17. |
HU E J. Research on milling force in ultrasonic assisted machining C/C composites[D].Jiaozuo: Henan Polytechnic University, 2017: 10-17 (in Chinese). | |
34 | 张宝磊, 李聪, 朱帅玲. CFRP碳纤维增强树脂基复合材料超声辅助切削技术研究现状与展望[J]. 装备制造技术, 2020(7): 185-190, 193. |
ZHANG B L, LI C, ZHU S L. Research status and prospect of ultrasonic assisted cutting technology for CFRP carbon fiber reinforced resin matrix composite[J]. Equipment Manufacturing Technology, 2020(7): 185-190, 193 (in Chinese). | |
35 | 王昌赢, 文亮, 明伟伟, 等. 碳纤维增强复合材料铣削加工技术研究进展[J]. 航空制造技术, 2015, 58(14): 76-80. |
WANG C Y, WEN L, MING W W, et al. Research progress in milling of carbon fiber reinforced polymer[J]. Aeronautical Manufacturing Technology, 2015, 58(14): 76-80 (in Chinese). | |
36 | WANG D P, LU S X, XU D, et al. Research on material removal mechanism of C/SiC composites in ultrasound vibration-assisted grinding[J]. Materials, 2020, 13(8): 1918. |
37 | SHU J, LIAO W H, ZHENG K, et al. Effect of rotary ultrasonic machining on surface structure and ablation resistance of C/C composite[J]. Ceramics International, 2022, 48(13): 18246-18256. |
38 | 蔡晓江, 唐宏亮, 倪云龙, 等. T800碳纤维增强复合材料精密切削加工机理[J]. 宇航材料工艺, 2016, 46(4): 64-67. |
CAI X J, TANG H L, NI Y L, et al. Precision machining mechanism of T800 carbon fiber reinforced polymer[J]. Aerospace Materials & Technology, 2016, 46(4): 64-67 (in Chinese). | |
39 | WANG X M, ZHANG L C. An experimental investigation into the orthogonal cutting of unidirectional fibre reinforced plastics[J]. International Journal of Machine Tools and Manufacture, 2003, 43(10): 1015-1022. |
40 | XU W X, ZHANG L C, WU Y B. Elliptic vibration-assisted cutting of fibre-reinforced polymer composites: Understanding the material removal mechanisms[J]. Composites Science and Technology, 2014, 92: 103-111. |
41 | ZHANG L C. Cutting composites: A discussion on mechanics modelling[J]. Journal of Materials Processing Technology, 2009, 209(9): 4548-4552. |
42 | 蔡晓江, 邱坤贤, 王呈栋, 等. 航空高强度碳纤维单向层合结构复合材料在切削过程中的各向异性行为研究[J]. 南京航空航天大学学报, 2014, 46(5): 684-693. |
CAI X J, QIU K X, WANG C D, et al. Study on anisotropic behaviors in cutting of aviation high-strength CFRP materials with unidirectional laminate structure[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(5): 684-693 (in Chinese). | |
43 | CHEN J, AN Q L, CHEN M. Transformation of fracture mechanism and damage behavior of ceramic-matrix composites during nano-scratching[J]. Composites Part A: Applied Science and Manufacturing, 2020, 130: 105756. |
44 | CHEN J, AN Q L, MING W W, et al. Investigation on machined surface quality in ultrasonic-assisted grinding of Cf/SiC composites based on fracture mechanism of carbon fibers[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109(5): 1583-1599. |
45 | LI H, QIN X D, HE G Y, et al. Investigation of chip formation and fracture toughness in orthogonal cutting of UD-CFRP[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(5): 1079-1088. |
46 | XUE F, ZHENG K, LIAO W H, et al. Investigation on fiber fracture mechanism of C/SiC composites by rotary ultrasonic milling[J]. International Journal of Mechanical Sciences, 2021, 191: 106054. |
47 | SHU J, LIAO W H, ZHENG K, et al. Surface morphology on carbon fiber composites by rotary ultrasonic milling[J]. Machining Science and Technology, 2021, 25(5): 721-737. |
48 | XIE Z W, LIU Z Q, WANG B, et al. Longitudinal amplitude effect on material removal mechanism of ultrasonic vibration-assisted milling 2.5D C/SiC composites[J]. Ceramics International, 2021, 47(22): 32144-32152. |
49 | 戴槟, 李晓舟, 许金凯, 等. 振幅对超声辅助磨削C/SiC复合材料表面形貌的影响[J]. 表面技术, 2022, 51(7): 263-273. |
DAI B, LI X Z, XU J K, et al. Amplitude effect on surface morphology by ultrasonic-assisted grinding of C/SiC composite[J]. Surface Technology, 2022, 51(7): 263-273 (in Chinese). | |
50 | XU W X, ZHANG L C. Modelling the bending-dominated fibre fracture in vibration-assisted cutting of unidirectional fibre-reinforced polymer composites[J]. Proceedings of International Conference on Leading Edge Manufacturing in 21st Century: LEM21, 2015, 2015.8: 2202-1-2202-5. |
51 | XU W X, ZHANG L C. Mechanics of fibre deformation and fracture in vibration-assisted cutting of unidirectional fibre-reinforced polymer composites[J]. International Journal of Machine Tools and Manufacture, 2016, 103: 40-52. |
52 | LIU J, CHEN G, REN C Z, et al. Effects of axial and longitudinal-torsional vibration on fiber removal in ultrasonic vibration helical milling of CFRP composites[J]. Journal of Manufacturing Processes, 2020, 58: 868-883. |
53 | 张德远, 彭振龙, 耿大喜, 等. 高效低损伤高速波动式超声加工技术进展[J]. 航空制造技术, 2022, 65(8): 22-33. |
ZHANG D Y, PENG Z L, GENG D X, et al. Development of high-speed wave-motion ultrasonic machining technology with high efficiency and low damage[J]. Aeronautical Manufacturing Technology, 2022, 65(8): 22-33 (in Chinese). | |
54 | 彭振龙, 张翔宇, 张德远. 航空航天难加工材料高速超声波动式切削方法[J]. 航空学报, 2022, 43(4): 525587. |
PENG Z L, ZHANG X Y, ZHANG D Y. High-speed ultrasonic vibration cutting for difficult-to-machine materials in aerospace field[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525587 (in Chinese). | |
55 | HALIM N F H A, ASCROFT H, BARNES S. Analysis of tool wear, cutting force, surface roughness and machining temperature during finishing operation of ultrasonic assisted milling (UAM) of carbon fibre reinforced plastic (CFRP)[J]. Procedia Engineering, 2017, 184: 185-191. |
56 | GENG D X, TENG Y D, LIU Y H, et al. Experimental study on drilling load and hole quality during rotary ultrasonic helical machining of small-diameter CFRP holes[J]. Journal of Materials Processing Technology, 2019, 270: 195-205. |
57 | HUDA A H N F, ASCROFT H, BARNES S. Machinability study of ultrasonic assisted machining (UAM) of carbon fibre reinforced plastic (CFRP) with multifaceted tool[J]. Procedia CIRP, 2016, 46: 488-491. |
58 | GENG D X, ZHANG D Y, LI Z, et al. Feasibility study of ultrasonic elliptical vibration-assisted reaming of carbon fiber reinforced plastics/titanium alloy stacks[J]. Ultrasonics, 2017, 75: 80-90. |
59 | LIU J, ZHANG D Y, QIN L G, et al. Feasibility study of the rotary ultrasonic elliptical machining of carbon fiber reinforced plastics (CFRP)[J]. International Journal of Machine Tools and Manufacture, 2012, 53(1): 141-150. |
60 | ZHANG L B, WANG L J, LIU X Y, et al. Mechanical model for predicting thrust and torque in vibration drilling fibre-reinforced composite materials[J]. International Journal of Machine Tools and Manufacture, 2001, 41(5): 641-657. |
61 | NEUGEBAUER R, STOLL A. Ultrasonic application in drilling[J]. Journal of Materials Processing Technology, 2004, 149(1-3): 633-639. |
62 | MAKHDUM F, PHADNIS V A, ROY A, et al. Effect of ultrasonically-assisted drilling on carbon-fibre-reinforced plastics[J]. Journal of Sound and Vibration, 2014, 333(23): 5939-5952. |
63 | SANDA A, ARRIOLA I, GARCIA NAVAS V, et al. Ultrasonically assisted drilling of carbon fibre reinforced plastics and Ti6Al4V[J]. Journal of Manufacturing Processes, 2016, 22: 169-176. |
64 | NING F D, WANG H, CONG W L, et al. A mechanistic ultrasonic vibration amplitude model during rotary ultrasonic machining of CFRP composites[J]. Ultrasonics, 2017, 76: 44-51. |
65 | CONG W L, PEI Z J, TREADWELL C. Preliminary study on rotary ultrasonic machining of CFRP/Ti stacks[J]. Ultrasonics, 2014, 54(6): 1594-1602. |
66 | SHAO Z Y, JIANG X G, LI Z, et al. Feasibility study on ultrasonic-assisted drilling of CFRP/Ti stacks by single-shot under dry condition[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(1): 1259-1273. |
67 | LIU Y, LIU Z B, WANG X B, et al. Experimental study on cutting force and surface quality in ultrasonic vibration-assisted milling of C/SiC composites[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(7): 2003-2014. |
68 | ISHIDA T, NOMA K, KAKINUMA Y, et al. Helical milling of carbon fiber reinforced plastics using ultrasonic vibration and liquid nitrogen[J]. Procedia CIRP, 2014, 24: 13-18. |
69 | 孙红伟, 祝景萍, 郑侃, 等. 机床与机器人旋转超声铣边对比试验研究[J]. 南京理工大学学报, 2022, 46(1): 1-6. |
SUN H W, ZHU J P, ZHENG K, et al. Comparative experimental research on rotary ultrasonic edge trimming of machine tool and robot[J]. Journal of Nanjing University of Science and Technology, 2022, 46(1): 1-6 (in Chinese). | |
70 | 胡安东, 陈燕, 傅玉灿, 等. 超声振动辅助铣磨加工对CFRP切削力和表面质量的影响[J]. 复合材料学报, 2016, 33(4): 788-796. |
HU A D, CHEN Y, FU Y C, et al. Effects of ultrasonic vibration-assisted grinding on cutting force and surface quality of CFRP[J]. Acta Materiae Compositae Sinica, 2016, 33(4): 788-796 (in Chinese). | |
71 | CONG W L, PEI Z J, SUN X, et al. Rotary ultrasonic machining of CFRP: A mechanistic predictive model for cutting force[J]. Ultrasonics, 2014, 54(2): 663-675. |
72 | LIU D F, CONG W L, PEI Z J, et al. A cutting force model for rotary ultrasonic machining of brittle materials[J]. International Journal of Machine Tools and Manufacture, 2012, 52(1): 77-84. |
73 | WANG H, NING F D, HU Y B, et al. Surface grinding of carbon fiber–reinforced plastic composites using rotary ultrasonic machining: Effects of tool variables[J]. Advances in Mechanical Engineering, 2016, 8(9): 168781401667028. |
74 | MA G F, KANG R K, YAN C, et al. Mechanical model of thrust force and torque in longitudinal-torsional coupled ultrasonic-assisted drilling of CFRP[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(1): 189-202. |
75 | MA G F, KANG R K, DONG Z G, et al. Hole quality in longitudinal–torsional coupled ultrasonic vibration assisted drilling of carbon fiber reinforced plastics[J]. Frontiers of Mechanical Engineering, 2020, 15(4): 538-546. |
76 | XU J, FENG P F, FENG F, et al. Subsurface damage and burr improvements of aramid fiber reinforced plastics by using longitudinal–torsional ultrasonic vibration milling[J]. Journal of Materials Processing Technology, 2021, 297: 117265. |
77 | 唐军. 碳/碳化硅材料纵扭复合超声铣削系统及加工稳定性的研究[D]. 焦作: 河南理工大学, 2015: 104-121. |
TANG J. Study on the longitudinal-torsional composite ultrasonic milling system of carbon/silicon carbide and machining stability[D].Jiaozuo: Henan Polytechnic University, 2015: 104-121 (in Chinese). | |
78 | 马星辉. 碳纤维复合材料超声振动铣削的技术基础研究[D]. 焦作: 河南理工大学, 2009: 19-49. |
MA X H. The basic technology research on the ultrasonic milling of CFRP[D].Jiaozuo: Henan Polytechnic University, 2009: 19-49 (in Chinese). | |
79 | 马俊金. C/C复合材料超声铣削机理研究[D]. 焦作: 河南理工大学, 2012: 27-45. |
MA J J. Research on the ultrasonic milling mechanism of C/C composites[D]. Jiaozuo: Henan Polytechnic University, 2012: 27-45 (in Chinese). | |
80 | 张世杰. CFRP/钛合金叠层结构高低频复合振动钻削试验研究[D]. 焦作: 河南理工大学, 2020: 42-54. |
ZHANG S J. Experimental study on high and low frequency compound vibration drilling of CFRP/titanium alloy laminated structure[D].Jiaozuo: Henan Polytechnic University, 2020: 42-54 (in Chinese). | |
81 | ZHANG J L, LIAO W H, ZHAO W, et al. Research on stability of robotic longitudinal-torsional ultrasonic milling with variable cutting force coefficient[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(3): 1707-1715. |
82 | MENG D, SUN H W, XIONG W W, et al. Investigation on stability of robotic rotary ultrasonic edge milling component with poor rigidity[J]. The International Journal of Advanced Manufacturing Technology, 2023, 124(5): 1579-1590. |
83 | 刘勇, 潘子韬, 周宏根, 等. 纤维增强复合材料钻削热研究进展与展望[J]. 复合材料学报, 2023, 40(8): 4416-4439. |
LIU Y, PAN Z T, ZHOU H G, et al. Review and prospect of drilling heat for fiber reinforced composite[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4416-4439 (in Chinese). | |
84 | GHAFARIZADEH S, LEBRUN G, CHATELAIN J F. Experimental investigation of the cutting temperature and surface quality during milling of unidirectional carbon fiber reinforced plastic[J]. Journal of Composite Materials, 2016, 50(8): 1059-1071. |
85 | 邹适, 李树健, 李鹏南, 等. CFRP钻削过程的切削热研究进展[J]. 宇航材料工艺, 2020, 50(4): 13-18. |
ZOU S, LI S J, LI P N, et al. Research progress of cutting heat in drilling process of CFRP[J]. Aerospace Materials & Technology, 2020, 50(4): 13-18 (in Chinese). | |
86 | CONG W L, ZOU X T, DEINES T W, et al. Rotary ultrasonic machining of carbon fiber reinforced plastic composites: An experimental study on cutting temperature[J]. Journal of Reinforced Plastics and Composites, 2012, 31(22): 1516-1525. |
87 | XU W X, ZHANG L C. A new approach to characterising the surface integrity of fibre-reinforced polymer composites during cutting[J]. Composites Part A: Applied Science and Manufacturing, 2017, 103: 272-282. |
88 | CHEN T, LI H B, YE M L, et al. Experimental study on effects of structural characteristics of C/E composite laminates on grinding temperature[J]. Composites Part B: Engineering, 2019, 157: 100-108. |
89 | 刘军, 范宝朋, 陈燕, 等. 超声振动磨削CFRP温度场的有限元仿真[J]. 机械科学与技术, 2020, 39(6): 821-828. |
LIU J, FAN B P, CHEN Y, et al. FEM simulation of temperature field in ultrasonic vibration grinding of CFRP[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(6): 821-828 (in Chinese). | |
90 | XIE Z W, LIU Z Q, HAN L C, et al. Optimizing amplitude to improve machined surface quality in longitudinal ultrasonic vibration-assisted side milling 2.5D C/SiC composites[J]. Composite Structures, 2022, 297: 115963. |
91 | LV D X, SHI P C, CHEN M D, et al. Effects of fiber orientations on fracture mechanisms in rotary ultrasonic drilling of carbon fiber reinforced plastic laminates[J]. Journal of Manufacturing Processes, 2023, 105: 199-212. |
92 | 张辽远, 刘小栋, 苏君金, 等. 超声辅助铣削碳纤维复合材料的工艺研究[J]. 组合机床与自动化加工技术, 2018(6): 147-150. |
ZHANG L Y, LIU X D, SU J J, et al. Ultrasonic assisted milling carbon fiber recombination materials technology research[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2018(6): 147-150 (in Chinese). | |
93 | 周鹏. 碳纤维复合材料工件切削表面粗糙度测量与评定方法研究[D]. 大连: 大连理工大学, 2011: 28-48. |
ZHOU P. Study on measurement and evaluation method of carbon fibre reinforced composites cutting surface roughness[D].Dalian: Dalian University of Technology, 2011: 28-48 (in Chinese). | |
94 | 陈雄兵. 碳纤维复合材料旋转超声铣磨加工技术研究[D]. 大连: 大连理工大学, 2009: 36-59. |
CHEN X B. Study on the rotary ultrasonic milling and grinding of carbon fiber composite technology[D].Dalian: Dalian University of Technology, 2009: 36-59 (in Chinese). | |
95 | 李锋, 李涌泉, 李文科, 等. 碳纤维/树脂基复合材料铣削表面粗糙度及表面形貌研究[J]. 表面技术, 2017, 46(9): 264-269. |
LI F, LI Y Q, LI W K, et al. Surface roughness and surface morphology of milled carbon/epoxy composite surface[J]. Surface Technology, 2017, 46(9): 264-269 (in Chinese). | |
96 | DING K, FU Y C, SU H H, et al. Study on surface/subsurface breakage in ultrasonic assisted grinding of C/SiC composites[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9): 3095-3105. |
97 | CHEN J, MING W W, AN Q L, et al. Mechanism and feasibility of ultrasonic-assisted milling to improve the machined surface quality of 2D Cf/SiC composites[J]. Ceramics International, 2020, 46(10): 15122-15136. |
98 | XUE F, ZHENG K, LIAO W H, et al. Experimental investigation on fatigue property at room temperature of C/SiC composites machined by rotary ultrasonic milling[J]. Journal of the European Ceramic Society, 2021, 41(6): 3341-3356. |
99 | 崔西亮, 田彪, 王永国. 碳纤维复合材料钻孔加工的缺陷分析[J]. 机电工程, 2013, 30(2): 182-184, 196. |
CUI X L, TIAN B, WANG Y G. Carbon fiber reinforced plastic drilling defect analysis[J]. Journal of Mechanical & Electrical Engineering, 2013, 30(2): 182-184, 196 (in Chinese). | |
100 | 毕铭智. C/SiC复合材料钻、铣加工技术的试验研究[D]. 大连: 大连理工大学, 2013: 16-22. |
BI M Z. Experimental research on drilling and milling of C/SiC composites[D].Dalian: Dalian University of Technology, 2013: 16-22 (in Chinese). | |
101 | DING K, FU Y C, SU H H, et al. Experimental studies on drilling tool load and machining quality of C/SiC composites in rotary ultrasonic machining[J]. Journal of Materials Processing Technology, 2014, 214(12): 2900-2907. |
102 | 康仁科, 赵凡, 鲍岩, 等. 超声辅助磨削SiCf/SiC陶瓷基复合材料[J]. 金刚石与磨料磨具工程, 2019, 39(4): 85-91. |
KANG R K, ZHAO F, BAO Y, et al. Ultrasonic assisted grinding of SiCf/SiC composites[J]. Diamond & Abrasives Engineering, 2019, 39(4): 85-91 (in Chinese). | |
103 | 王许, 丁凯, 徐铭洲, 等. 碳纤维复合材料超声辅助钻削加工孔质量研究[J]. 制造技术与机床, 2022(2): 30-34. |
WANG X, DING K, XU M Z, et al. Research of hole quality during drilling of CFRP with ultrasonic-assisted machining[J]. Manufacturing Technology & Machine Tool, 2022(2): 30-34 (in Chinese). | |
104 | SHAN C W, ZHANG X, DANG J, et al. Rotary ultrasonic drilling of needle-punched carbon/carbon composites: comparisons with conventional twist drilling and high-speed drilling[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(1): 189-200. |
105 | NING F D, CONG W L, WANG H, et al. Surface grinding of CFRP composites with rotary ultrasonic machining: A mechanistic model on cutting force in the feed direction[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(1): 1217-1229. |
106 | MAKHDUM F, JENNINGS L T, ROY A, et al. Cutting forces in ultrasonically assisted drilling of carbon fibre-reinforced plastics[J]. Journal of Physics: Conference Series, 2012, 382: 012019. |
107 | GENG D X, LIU Y H, SHAO Z Y, et al. Delamination formation and suppression during rotary ultrasonic elliptical machining of CFRP[J]. Composites Part B: Engineering, 2020, 183: 107698. |
108 | CHEN X X, WANG H, HU Y B, et al. Rotary ultrasonic machining of CFRP composites: effects of machining variables on workpiece delamination[C]∥ Proceedings of ASME 2019 14th International Manufacturing Science and Engineering Conference, 2019. |
109 | 顾钒. 基于工业机器人的陶瓷基复合材料旋转超声制孔关键技术研究[D]. 杭州: 浙江大学, 2020: 33-90. |
GU F. Study on key techniques of rotary ultrasonic machining of ceramic matrix composite based on industrial robot[D].Hangzhou: Zhejiang University, 2020: 33-90 (in Chinese). | |
110 | DONG S, LIAO W H, ZHENG K, et al. Investigation on thrust force in rotary ultrasonic drilling of CFRP/aluminum stacks[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(2): 394-404. |
111 | DONG S, LIAO W H, ZHENG K, et al. Investigation on exit burr in robotic rotary ultrasonic drilling of CFRP/aluminum stacks[J]. International Journal of Mechanical Sciences, 2019, 151: 868-876. |
112 | ZHENG K, DONG S, LIAO W H. Investigation on thrust force in rotary ultrasonic drilling of CFRP using Brad drill[J]. Machining Science and Technology, 2019, 23(6): 971-984. |
[1] | 郑锋, 黄薇, 季宏丽, 裘进浩. 复合材料薄板结构中的声学黑洞效应探究[J]. 航空学报, 2023, 44(1): 426453-426453. |
[2] | 徐会, 康仁科, 陈燕. 磁力研磨法去除燃油喷嘴积碳的试验研究[J]. 航空学报, 2020, 41(2): 623505-623505. |
[3] | 夏峰, 刘战强, 宋清华. 约束阻尼型减振镗杆[J]. 航空学报, 2014, 35(9): 2652-2659. |
[4] | 张云鹏;孙广标;张安洲. 超声磨料对TC4钛合金电火花加工表面质量的影响[J]. 航空学报, 2010, 31(1): 204-209. |
[5] | 张厚江. 单向碳纤维复合材料直角自由切削力的研究[J]. 航空学报, 2005, 26(5): 604-609. |
[6] | 陈国定;李东紫. 动力传输齿轮表面闪温的部分弹流热分析[J]. 航空学报, 1992, 13(8): 444-447. |
[7] | 陈国定;吴立言;李建华;周鸿;王步瀛. 线接触零件部分热弹流润滑油膜厚度公式[J]. 航空学报, 1992, 13(4): 131-136. |
[8] | 王珉;W.S.Lau. 碳纤维复合材料电火花加工(EDM)机理究研[J]. 航空学报, 1991, 12(12): 651-654. |
[9] | 曹麟祥;李德芬. 用红外光散射技术测量精加工表面粗糙度参数Ra[J]. 航空学报, 1990, 11(4): 215-216. |
[10] | 冯海燕. 某机种复合材料构件的模态分析[J]. 航空学报, 1990, 11(11): 570-572. |
[11] | 李锐;宋焕成. 复合材料涡轮风扇叶片的发展[J]. 航空学报, 1987, 8(8): 348-354. |
[12] | 白淑贞. 复合材料断口形貌与性能[J]. 航空学报, 1987, 8(7): 377-382. |
[13] | 范棠. 发展我国航空复合材料应用的途径[J]. 航空学报, 1985, 6(3): 223-229. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学