李斌1, 张泽南2, 贾飞2, 孙健1, 刘彦菊2(), 冷劲松1
收稿日期:
2024-01-02
修回日期:
2024-01-18
接受日期:
2024-03-04
出版日期:
2024-03-21
发布日期:
2024-03-19
通讯作者:
刘彦菊
E-mail:yj_liu@hit.edu.cn
Bin LI1, Zenan ZHANG2, Fei JIA2, Jian SUN1, Yanju LIU2(), Jinsong LENG1
Received:
2024-01-02
Revised:
2024-01-18
Accepted:
2024-03-04
Online:
2024-03-21
Published:
2024-03-19
Contact:
Yanju LIU
E-mail:yj_liu@hit.edu.cn
摘要:
机翼翼尖对飞行器的气动性能和操控性能有重要影响,在起飞、爬升、巡航、下降等不同飞行阶段,飞行器对机翼翼尖几何参数有不同需求。变翼尖机翼技术是一种多功能、局部变体技术,可用于提升机翼气动性能、提高燃油效率、减轻阵风载荷、强化操控性能等用途。从气动特性、结构响应和操控特性3方面,对变翼尖机翼技术效益进行梳理,从翼尖变形形式、材料与结构组成2个角度,展开对变翼尖机翼技术研究现状的讨论,指出变翼尖机翼技术正在向多功能集成、组合变形和智能化方向发展。提出变翼尖机翼技术亟需解决的4项关键技术,即全局气动优化、变形/承载一体化蒙皮技术、高效驱动系统设计、智能控制技术,分析了各项关键技术的技术特点和研究难点。变翼尖机翼关键技术若得到突破,相关技术将可以移植应用到全局变体飞行器技术中。
中图分类号:
李斌, 张泽南, 贾飞, 孙健, 刘彦菊, 冷劲松. 变翼尖机翼技术研究现状与发展趋势[J]. 航空学报, 2024, 45(19): 30042.
Bin LI, Zenan ZHANG, Fei JIA, Jian SUN, Yanju LIU, Jinsong LENG. Research status and development trend of morphing wingtip technology[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(19): 30042.
表 1
变翼尖机翼技术效益分析
研究团队 | 研究方法 | 变量参数 | 研究内容 | 效益 |
---|---|---|---|---|
Guerrero等[ | 数值仿真 | 翼尖倾角翼尖后掠角 机翼攻角 | 升力、阻力系数升阻比 | 阻力减小空气动力学效率提高 |
Friswell等[ | 风洞试验 | 翼尖倾角 | 升力特性机翼表面压力 | 升力增加调节气动载荷分布 |
Castrichini等[ | 数值仿真风洞试验 | 翼尖倾角翼尖后掠角翼尖质量铰链刚度 铰链外张角 | 静态载荷阵风载荷 颤振分析 | 静态翼根负荷减轻动态阵风载荷降低 气动弹性稳定性增强 |
Ajaj[ | 数值仿真 | 翼尖倾角翼尖跨度 铰链外张角 | 静态载荷气动稳定性 | 静态飞行载荷降低翼根弯矩降低 翼根剪切力降低 操控稳定性增强 |
Friswell等[ | 数值仿真风洞试验 | 翼尖倾角 | 滚转、升降和偏航控制 | 替代副翼、升降舵和 方向舵等传统控制面 |
Ajaj等[ | 数值仿真风洞试验 飞行试验 | 翼展长度 飞行速度 | 升阻比静态稳定性 滚转控制 | 空气动力学效率提高替代传统 滚转控制面机动性能提高 |
Mohseni等[ | 风洞试验 粒子图像测速 | 翼尖倾角机翼攻角 | 尖端涡旋升力系数 滚转控制 | 强化滚转控制横向稳定性增强 |
Vos等[ | 飞行试验 | 后缘偏转角 | 滚转控制 | 强化滚转控制 |
表 2
变翼尖机翼技术分类及其研究进展
变形类型 | 研究单位 | 驱动/机构 | 蒙皮 | 应用目的 | 研究进展 | |
---|---|---|---|---|---|---|
面内变形 | 变展长 | 阿联酋大学[ | 齿轮机构 | 刚性蒙皮 | 增升 滚转控制 | Ⅳ |
变展长 | 那不勒斯费德里二世大学[ | 气动 | 柔性蒙皮 | 减阻 | Ⅰ | |
变后掠 | 布朗大学[ | 电机 | 操控性 | Ⅳ | ||
面外变形 | 变倾角 | 波音公司[ | 铰链传动 | 刚性蒙皮 | 减阻 | Ⅴ |
变倾角 | 美国宇航局[ | 形状记忆合金 | 刚性蒙皮 | 减阻 偏航控制 | Ⅳ | |
变倾角 | 斯旺西大学[ | 波纹结构 | 柔性蒙皮 | 减阻增升 | Ⅲ | |
变倾角 | 哈尔滨工业大学[ | 气动蜂窝结构 | 形状记忆聚合物变刚度蒙皮 | 减重 减阻增升 | Ⅱ | |
变倾角 | 康奈尔大学[ | 形状记忆合金 | 柔性蒙皮 | 减阻增升 | Ⅲ | |
变倾角 | 首尔大学[ | 智能软复合材料 | 减阻增升 | Ⅲ | ||
变后缘 | 堪萨斯大学[ | 压电材料 | 柔性蒙皮 | 滚转控制 | Ⅳ | |
变后缘 | 佛罗里达州立大学[ | 压电材料 | 刚性蒙皮 | 降涡 | Ⅳ | |
变前缘 变后缘 | 德国宇航中心[ | 柔顺机构 | 柔性蒙皮 | 减阻增升 操控性 | Ⅲ | |
组合变形 | 六自由度变形 | 瑞尔森大学[ | 变形翼盒 | 刚性蒙皮 | 减阻增升 操控性 | Ⅱ |
变后掠变展长 | 中国航天空气动力技术研究院[ | 电机 | 刚性蒙皮 | 减阻增升 | Ⅲ | |
仿生式变形 | 佐治亚理工学院[ | 减阻增升 | Ⅰ |
1 | ROTH B, PETERS C, CROSSLEY W. Aircraft sizing with morphing as an independent variable: Motivation, strategies and investigations[C]∥ AIAA’s Aircraft Technology, Integration, and Operations (ATIO) 2002 Technical Forum. Reston: AIAA, 2002. |
2 | JHA A K, KUDVA J N. Morphing aircraft concepts, classifications, and challenges[C]∥ SPIE Proceedings, Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies. 2004. |
3 | SMITH K, BUTT J, VON SPAKOVSKY M, et al. A study of the benefits of using morphing wing technology in fighter aircraft systems[C]∥ 39th AIAA Thermophysics Conference. Reston: AIAA, 2007. |
4 | FROMMER J, CROSSLEY W. Enabling continuous optimization for sizing morphing aircraft concepts[C]∥ 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
5 | PLINE A. Designing the 21st century aerospace vehicle[EB/OL].(2007-11-30) [2021-12-05]. . |
6 | URSACHE N, MELIN T, ISIKVEREN A, et al. Morphing winglets for aircraft multi-phase improvement[C]∥ 7th AIAA Aviation Technology, Integration, and Operations Conference (ATIO). Reston: AIAA, 2007. |
7 | SMITH D D, AJAJ R M, ISIKVEREN A T, et al. Multi-objective optimization for the multiphase design of active polymorphing wings[J]. Journal of Aircraft, 2012, 49(4): 1153-1160. |
8 | 张庆峰, 熊克, 李伟, 等. 变体翼梢小翼的减阻机理数值模拟[J]. 航空动力学报, 2014, 29(5): 1105-1111. |
ZHANG Q F, XIONG K, LI W, et al. Numerical simulation on morphing winglets for its drag reduction mechanisms[J]. Journal of Aerospace Power, 2014, 29(5): 1105-1111 (in Chinese). | |
9 | 仇翯辰, 邱志平, 陈贤佳, 等. 商用飞机翼尖装置减阻机理及其发展与应用[J]. 航空制造技术, 2015, 58(15): 120-125, 128. |
QIU H C, QIU Z P, CHEN X J, et al. Introduction to winglet drag reduction mechanism of commercial aircraft and its development & application[J]. Aeronautical Manufacturing Technology, 2015, 58(15): 120-125, 128 (in Chinese). | |
10 | GUERRERO J, SANGUINETI M, WITTKOWSKI K. CFD study of the impact of variable cant angle winglets on total drag reduction[J]. Aerospace, 2018, 5(4): 126. |
11 | COOPER J E, CHEKKAL I, CHEUNG R C M, et al. Design of a morphing wingtip[J]. Journal of Aircraft, 2015, 52(5): 1394-1403. |
12 | SEGUI M, ABEL F R, BOTEZ R M, et al. New aerodynamic studies of an adaptive winglet application on the regional jet CRJ700[J]. Biomimetics, 2021, 6(4): 54. |
13 | EGUEA J P, PEREIRA GOUVEIA DA SILVA G, MARTINI CATALANO F. Fuel efficiency improvement on a business jet using a camber morphing winglet concept[J]. Aerospace Science and Technology, 2020, 96: 105542. |
14 | KAZIM A H, MALIK A H, ALI H, et al. CFD analysis of variable geometric angle winglets[J]. Aircraft Engineering and Aerospace Technology, 2022, 94(2): 289-301. |
15 | 冷劲松, 孙健, 刘彦菊. 智能材料和结构在变体飞行器上的应用现状与前景展望[J]. 航空学报, 2014, 35(1): 29-45. |
LENG J S, SUN J, LIU Y J. Application status and future prospect of smart materials and structures in morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 29-45 (in Chinese). | |
16 | 尹维龙, 石庆华. 变体飞行器蒙皮材料与结构研究综述[J]. 航空制造技术, 2017, 60(17): 24-29. |
YIN W L, SHI Q H. Review of material and structure for morphing aircraft skin[J]. Aeronautical Manufacturing Technology, 2017, 60(17): 24-29 (in Chinese). | |
17 | 杜善义, 张博明. 飞行器结构智能化研究及其发展趋势[J]. 宇航学报, 2007, 28(4): 773-778. |
DU S Y, ZHANG B M. Status and developments of intelligentized aircraft structures[J]. Journal of Astronautics, 2007, 28(4): 773-778 (in Chinese). | |
18 | HARTL D J, LAGOUDAS D C. Aerospace applications of shape memory alloys[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007,221(4): 535-552. |
19 | 裘进浩, 边义祥, 季宏丽, 等. 智能材料结构在航空领域中的应用[J]. 航空制造技术, 2009, 52(3): 26-29. |
QIU J H, BIAN Y X, JI H L, et al. Application of smart materials and structures in aviation industry[J]. Aeronautical Manufacturing Technology, 2009, 52(3): 26-29 (in Chinese). | |
20 | BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877. |
21 | GOMEZ J C, GARCIA E. Morphing unmanned aerial vehicles[J]. Smart Materials and Structures, 2011, 20(10): 103001. |
22 | GATTO A, MATTIONI F, FRISWELL M I. Experimental investigation of bistable winglets to enhance aircraft wing lift takeoff capability[J]. Journal of Aircraft, 2009, 46(2): 647-655. |
23 | GATTO A, BOURDIN P, FRISWELL M I. Experimental investigation into articulated winglet effects on flying wing surface pressure aerodynamics[J]. Journal of Aircraft, 2010, 47(5): 1811-1815. |
24 | CASTRICHINI A, HODIGERE SIDDARAMAIAH V, CALDERON D E, et al. Nonlinear folding wing tips for gust loads alleviation[J]. Journal of Aircraft, 2016, 53(5): 1391-1399. |
25 | CASTRICHINI A, SIDDARAMAIAH V H, CALDERON D E, et al. Preliminary investigation of use of flexible folding wing tips for static and dynamic load alleviation[J]. The Aeronautical Journal, 2017,121(1235): 73-94. |
26 | CHEUNG R C, CASTRICHINI A, REZGUI D, et al. Testing of wing-tip spring device for gust loads alleviation[C]∥ Proceedings of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2017. |
27 | AJAJ R M. Flight dynamics of transport aircraft equipped with flared-hinge folding wingtips[J]. Journal of Aircraft, 2020, 58(1): 98-110. |
28 | BOURDIN P, GATTO A, FRISWELL M I. Aircraft control via variable cant-angle winglets[J]. Journal of Aircraft, 2008, 45(2): 414-423. |
29 | AJAJ R M, BEAVERSTOCK C S, FRISWELL M I. Morphing aircraft: The need for a new design philosophy[J]. Aerospace Science and Technology, 2016, 49: 154-166. |
30 | AJAJ R M, JANKEE G K. The transformer aircraft: A multimission unmanned aerial vehicle capable of symmetric and asymmetric span morphing[J]. Aerospace Science and Technology, 2018, 76: 512-522. |
31 | O’DONNELL R, MOHSENI K. Roll control of low-aspect-ratio wings using articulated winglet control surfaces[J]. Journal of Aircraft, 2019, 56(2): 419-430. |
32 | VOS R, BARRETT R, DE BREUKER R, et al. Post-buckled precompressed elements: A new class of control actuators for morphing wing UAVs[J]. Smart Material Structures, 2007, 16(3): 919-926. |
33 | SMITH D D, LOWENBERG M, JONES D, et al. Computational and experimental validation of the active morphing wing[J]. Journal of aircraft, 2014, 51(3): 925-937. |
34 | FALCÃO L, GOMES A A, SULEMAN A. Aero-structural design optimization of a morphing wingtip[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(10): 1113-1124. |
35 | EGUEA J P, BRAVO-MOSQUERA P D, CATALANO F M. Camber morphing winglet influence on aircraft drag breakdown and tip vortex structure[J]. Aerospace Science and Technology, 2021, 119: 107148. |
36 | AJAJ R M, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M, et al. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress in Aerospace Sciences, 2021, 120: 100682. |
37 | PANAGIOTOU P, ANTONIOU S, YAKINTHOS K. Cant angle morphing winglets investigation for the enhancement of the aerodynamic, stability and performance characteristics of a tactical blended-wing-body UAV[J]. Aerospace Science and Technology, 2022, 123: 107467. |
38 | DANIELE E, DE FENZA A, DELLA VECCHIA P. Conceptual adaptive wing-tip design for pollution reductions[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(11): 1197-1212. |
39 | DI LUCA M, MINTCHEV S, HEITZ G, et al. Bioinspired morphing wings for extended flight envelope and roll control of small drones[J]. Interface Focus, 2017, 7(1): 20160092. |
40 | JOHN T. Boeing’s 777X jetliner comes together[EB/ OL]. (2018-11-22)[2021-12-05]. . |
41 | GIBBS Y. NASA to test in-flight folding spanwise adaptive wing to enhance aircraft efficiency[EB/OL]. (2018-06-10)[2021-12-05]. . |
42 | WANG C, HADDAD KHODAPARAST H, FRISWELL M I, et al. Development of a morphing wingtip based on compliant structures[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(16): 3293-3304. |
43 | SUN J, GAO H L, SCARPA F, et al. Active inflatable auxetic honeycomb structural concept for morphing wingtips[J]. Smart Material Structures, 2014, 23(12): 125023. |
44 | MANZO J, GARCIA E, WICKENHEISER A M, et al. Adaptive structural systems and compliant skin technology of morphing aircraft structures[C]∥Proceedings of SPIE 5390, Smart Structures and Materials 2004: Smart Structures and Integrated Systems. 2004, 5390: 225-234. |
45 | HAN M W, RODRIGUE H, KIM H I, et al. Shape memory alloy/glass fiber woven composite for soft morphing winglets of unmanned aerial vehicles[J]. Composite Structures, 2016, 140: 202-212. |
46 | GUHA T K, KUMAR R. Active control of wingtip vortices using piezoelectric actuated winglets[C]∥54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
47 | VASISTA S, DE GASPARI A, RICCI S, et al. Compliant structures-based wing and wingtip morphing devices[J]. Aircraft Engineering and Aerospace Technology, 2016, 88(2): 311-330. |
48 | MOOSAVIAN A, XI F F, HASHEMI S M. Design and motion control of fully variable morphing wings[J]. Journal of Aircraft, 2013, 50(4): 1189-1201. |
49 | 陈钱, 尹维龙, 白鹏, 等. 变后掠变展长翼身组合体系统设计与特性分析[J]. 航空学报, 2010, 31(3): 506-513. |
CHEN Q, YIN W L, BAI P, et al. System design and characteristics analysis of a variable-sweep and variable-span wing-body[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 506-513 (in Chinese). | |
50 | SHELTON A, TOMAR A, PRASAD J, et al. Active multiple winglets for improved unmanned-aerial-vehicle performance[J]. Journal of Aircraft, 2006, 43(1): 110-116. |
51 | ROWE J, SMITH S, SIMPSON A, et al. Development of a finite element model of warping inflatable wings[C]∥ 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006. |
52 | CHANG E, MATLOFF L Y, STOWERS A K, et al. Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion[J]. Science Robotics, 2020, 5(38): eaay1246. |
53 | AJANIC E, FEROSKHAN M, MINTCHEV S, et al. Bioinspired wing and tail morphing extends drone flight capabilities[J]. Science Robotics, 2020, 5(47): eabc2897. |
54 | DUSSART G X, LONE M M, O’ROURKE C, et al. In-flight folding wingtip system: Inspiration from the XB-70 Valkyrie[C]∥ AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
55 | JENKINS D R, LANDIST. North American Valkyrie XB-70-WarbirdTech Vol 34 [M]. Thurgoona:Specialty Press, 2002: 49-76. |
56 | DUSSART G X, YUSUF S Y, LONE M M. Effect of wingtip morphing on the roll mode of a flexible aircraft[C]∥ Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2018. |
57 | CONCILIO A, CONCILIO A LO, MILAZZO A, et al. Optimization design process of a morphing winglet[C]∥Proceedings of SPIE 10593, Bioinspiration, Biomimetics, and Bioreplication VIII. 2018, 1059305: 1-10. |
58 | AMEDURI S, DIMINO I, CONCILIO A, et al. Specific modeling issues on an adaptive winglet skeleton[J]. Applied Sciences, 25. |
59 | DIMINO I, ANDREUTTI G, MOENS F, et al. Integrated design of a morphing winglet for active load control and alleviation of turboprop regional aircraft[J]. Applied Sciences, 2021, 11(5): 2439. |
60 | VASISTA S, RIEMENSCHNEIDER J, VAN DE KAMP B, et al. Evaluation of a compliant droop-nose morphing wing tip via experimental tests[J]. Journal of Aircraft, 2016, 54(2): 519-534. |
61 | COIRO D P, NICOLOSI F, SCHERILLO F, et al. Improving Hang-glider maneuverability using multiple winglets: A numerical and experimental investigation[J]. Journal of Aircraft, 2008, 45(3): 981-989. |
62 | PECORA R, AMOROSO F, DIMINO I, et al. Aeroelastic stability analysis of a large civil aircraft equipped with morphing winglets and adaptive flap tabs[C]∥ Proceedings of SPIE 10595, Active and Passive Smart Structures and Integrated Systems XII. 2018, 105930L: 1-13. |
63 | PECORA R, MAGNIFICO M, AMOROSO F, et al. Multi-parametric flutter analysis of a morphing wing trailing edge[J]. The Aeronautical Journal, 2014, 118(1207): 1063-1078. |
64 | RAMEZANI A, CHUNG S J, HUTCHINSON S. A biomimetic robotic platform to study flight specializations of bats[J]. Science Robotics, 2017, 2(3): eaal2505. |
65 | 杜善义, 冷劲松, 王殿富. 智能材料系统与结构[M]. 北京:科学出版社, 2001:1-5. |
DU S Y, LENG J S, WANG D F. Intelligent material system and structure [M]. Beijing: Science Press, 2001:1-5 (in Chinese). | |
66 | SUN J, GUAN Q H, LIU Y J, et al. Morphing aircraft based on smart materials and structures: A state-of-the-art review[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(17): 2289-2312. |
67 | FLORANCE J, FLEMING G, BURNER A, et al. Contributions of the NASA Langley Research Center to the DARPA/AFRL/NASA/northrop grumman smart wing program[C]∥ 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003. |
68 | LOVE M, ZINK P, STROUD R, et al. Demonstration of morphing technology through ground and wind tunnel tests[C]∥ 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
69 | WÖLCKEN P C, PAPADOPOULOS M. Smart intelligent aircraft structures (SARISTU)[C]∥ Proceedings of the Final Project Conference. 2015: 257-274. |
70 | HERRERA C, SPIVEY N, LUNG S F, et al. Aeroelastic response of the ACTE transition section[C]∥ 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2016. |
71 | OLSON E. Morphing wing created using smart materials and actuators[EB/OL]. [2010-09-01]. . |
72 | CRAMER N B, CELLUCCI D W, FORMOSO O B, et al. Elastic shape morphing of ultralight structures by programmable assembly[J]. Smart Materials & Structures, 2019, 28(5): 055006. |
73 | BARBARINO S, SAAVEDRA FLORES E I, AJAJ R M, et al. A review on shape memory alloys with applications to morphing aircraft[J]. Smart Materials and Structures, 2014, 23(6): 063001. |
74 | 李伟, 熊克, 陈宏, 等. 含有SMA弹簧驱动器的可变倾斜角翼梢小翼研究[J]. 航空学报, 2012, 33(1): 22-33. |
LI W, XIONG K, CHEN H, et al. Research on variable cant angle winglets with shape memory alloy spring actuators[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1): 22-33 (in Chinese). | |
75 | MAO Z W, XU Z W, WANG Q. Shape memory alloy actuator with active cooling device and deflectable winglet application[J]. Smart Material Structures, 2020, 29(10): 105026. |
76 | GIBBS Y. NASA tests new alloy to fold wings in flight[EB/OL]. (2018-06-10)[2021.12.05]. . |
77 | AREA-I. Prototype-technology evaluation research aircraft[EB/OL]. (2018-12-20)[2018.12.20]. . |
78 | HEIDMAN K. Metal with memory: F-18 wing fold[EB/OL]. (2018-08-21)[2018.12.20]. . |
79 | RODRIGUE H, CHO S, HAN M W, et al. Effect of twist morphing wing segment on aerodynamic performance of UAV[J]. Journal of Mechanical Science and Technology, 2016, 30(1): 229-236. |
80 | RODRIGUE H, BHANDARI B, HAN M W, et al. A shape memory alloy-based soft morphing actuator capable of pure twisting motion[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(9): 1071-1078. |
81 | 谷小军, 周炳楠, 王文龙, 等. 形状记忆合金驱动的可变翼梢小翼设计与验证[J]. 机械工程学报, 2022, 58(17): 49-57. |
GU X J, ZHOU B N, WANG W L, et al. Design and assessment of variable winglet driven by shape memory alloy[J]. Journal of Mechanical Engineering, 2022, 58(17): 49-57 (in Chinese). | |
82 | LENG J S, LAN X, LIU Y J, et al. Shape-memory polymers and their composites: Stimulus methods and applications[J]. Progress in Materials Science, 2011, 56(7): 1077-1135. |
83 | PATADIYA J, GAWANDE A, JOSHI G, et al. Additive manufacturing of shape memory polymer composites for futuristic technology[J]. Industrial & Engineering Chemistry Research, 2021, 60(44): 15885-15912. |
84 | KUDER I K, ARRIETA A F, RAITHER W E, et al. Variable stiffness material and structural concepts for morphing applications[J]. Progress in Aerospace Sciences, 2013, 63: 33-55. |
85 | SUN J, XU Y Y, CHEN Y J, et al. Spandex fiber reinforced shape memory polymer composites and their mechanical properties[J]. Advanced Materials Research, 2011, 410: 370-374. |
86 | LENG J S. Active moving polymers and multifunctional composites: Shape the future structures[J]. Advanced Materials Research, 2013, 745: 129-134. |
87 | SUN J, LIU Y J, LENG J S. Mechanical properties of shape memory polymer composites enhanced by elastic fibers and their application in variable stiffness morphing skins[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(15): 2020-2027. |
88 | BYE D, MCCLURE P. Design of a morphing vehicle[C]∥ 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
89 | LENG J S, YU K, SUN J, et al. Deployable morphing structure based on shape memory polymer[J]. Aircraft Engineering and Aerospace Technology, 2015, 87(3): 218-223. |
90 | YU K, YIN W L, SUN S H, et al. Design and analysis of morphing wing based on SMP composite[C]∥ SPIE Proceedings, Industrial and Commercial Applications of Smart Structures Technologies. 2009. |
91 | BILGEN O, KOCHERSBERGER K, DIGGS E C, et al. Morphing wing micro-air-vehicles via macro-fiber-composite actuators[C]∥ 48th AIAA/ASME/ASCE/AH S/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
92 | CHEN X, LIU J, LI Q. The smart morphing winglet driven by the piezoelectric macro fiber composite actuator[J]. The Aeronautical Journal, 2022, 126(1299): 830-847. |
93 | URSACHE N M, MARES C. Optimization of a corrugated skin for a morphable winglet[C]∥53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012. |
94 | DAYYANI I, SHAW A D, SAAVEDRA FLORES E I, et al. The mechanics of composite corrugated structures: A review with applications in morphing aircraft[J]. Composite Structures, 2015, 133: 358-380. |
95 | WANG C, KHODAPARAST H H, FRISWELL M I. Conceptual study of a morphing winglet based on unsymmetrical stiffness[J]. Aerospace Science and Technology, 2016, 58: 546-558. |
96 | ERMAKOVA A, DAYYANI I. Shape optimisation of composite corrugated morphing skins[J]. Composites Part B: Engineering, 2017, 115: 87-101. |
97 | URSACHE N M, MELIN T, ISIKVEREN A T, et al. Technology integration for active poly-morphing winglets development[C]∥ Proceedings of ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. New York: ASME, 2009: 775-782. |
98 | WANG C, KHODAPARAST H H, FRISWELL M I, et al. Compliant structures based on stiffness asymmetry[J]. The Aeronautical Journal, 2018, 122(1249): 442-461. |
99 | VOCKE, R, CURT K, NORMAN W. Development of a span-extending blade tip system for a reconfigurable helicopter rotor[C]∥ 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA. Reston: AIAA, 2012. |
100 | VOCKE R D III, KOTHERA C S, WOODS B K S, et al. Development and testing of a span-extending morphing wing[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 879-890. |
101 | LIU W D, ZHU H, ZHOU S Q, et al. In-plane corrugated cosine honeycomb for 1D morphing skin and its application on variable camber wing[J]. Chinese Journal of Aeronautics, 2013, 26(4): 935-942. |
102 | DAYNES S, WEAVER P M. Design and testing of a deformable wind turbine blade control surface[J]. Smart Materials and Structures, 2012, 21(10): 105019. |
103 | HASSAN M R, SCARPA F, RUZZENE M, et al. Smart shape memory alloy chiral honeycomb[J]. Materials Science and Engineering: A, 2008, 481-482: 654-657. |
104 | NEVILLE R M, CHEN J G, GUO X G, et al. A Kirigami shape memory polymer honeycomb concept for deployment[J]. Smart Materials and Structures, 2017, 26(5): 05LT03. |
105 | BUBERT E, WOODS B, KOTHERA C, et al. Design and fabrication of a passive 1-D morphing aircraft skin[J]. Journal of Intelligent Material Systems & Structures, 2010, 21(17): 1699-1717. |
106 | HAJARIAN A, ZARGAR O, ZAKERZADEH M R, et al. Fabrication, characterization, and modeling of a structural flexible skin for applications in morphing wings[J]. Mechanics of Materials, 2022, 172: 104409. |
107 | 孙健. 基于SMPC蒙皮和主动蜂窝结构的可变形机翼结构研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 96-99. |
SUN J. Research on deformable wing structure based on SMPC skin and active honeycomb structure[D]. Harbin: Harbin Institute of Technology, 2015: 96-99 (in Chinese). | |
108 | SUN J, DU L Z, SCARPA F, et al. Morphing wingtip structure based on active inflatable honeycomb and shape memory polymer composite skin: A conceptual work[J]. Aerospace Science and Technology, 2021, 111: 106541. |
109 | 张欣, 季宏丽, 周丹杰, 等. 高超声速飞行器变体机翼方案及气动特性分析[J]. 航空工程进展, 2023, 14(4): 47-57. |
ZHANG X, JI H L, ZHOU D J, et al. Variant wing scheme and aerodynamic characteristics analysis of hypersonic aircraft[J]. Advances in Aeronautical Science and Engineering, 2023, 14(4): 47-57 (in Chinese). | |
110 | 白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报, 2019, 37(3): 426-443. |
BAI P, CHEN Q, XU G W, et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(3): 426-443 (in Chinese). | |
111 | 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022, 43(10): 527449. |
RAN M P, WANG C C, LIU H H, et al. Research status and future development of morphing aircraft control technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527449 (in Chinese). | |
112 | 张尧, 张婉, 别大卫, 等. 智能变体飞行器研究综述与发展趋势分析[J]. 飞航导弹, 2021(6): 14-23. |
ZHANG Y, ZHANG W, BIE D W, et al. Research summary and development trend analysis of intelligent variant aircraft[J]. Aerodynamic Missile Journal, 2021(6): 14-23 (in Chinese). | |
113 | 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225. |
HAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225 (in Chinese). | |
114 | THILL C, ETCHES J, BOND I, et al. Morphing skins[J]. The Aeronautical Journal, 2008, 112(1129): 117-139. |
[1] | 孙大智, 陈希, 鲍为成, 卞威, 招启军. 高速直升机机身干扰对推力桨气动与噪声源特性的影响[J]. 航空学报, 2024, 45(9): 529142-529142. |
[2] | 陈树生, 贾苜梁, 刘衍旭, 高正红, 向星皓. 变体飞行器变形方式及气动布局设计关键技术研究进展[J]. 航空学报, 2024, 45(6): 629595-629595. |
[3] | 李海星, 周峰, 颜巍, 白峰, 赵克良. 砂纸冰对民机平尾气动特性的影响[J]. 航空学报, 2024, 45(2): 128657-128657. |
[4] | 韩译辉, 胡俊, 于勇, 于剑桥. 十字型柔性控制面气动控制力风洞试验验证[J]. 航空学报, 2024, 45(13): 129280-129280. |
[5] | 常思源, 肖尧, 李广利, 田中伟, 张凯凯, 崔凯. 翼反角对高压捕获翼构型高超气动特性的影响[J]. 航空学报, 2023, 44(8): 127349-127349. |
[6] | 包文龙, 贾贺, 薛晓鹏, 黄雪姣, 高树义, 荣伟, 王奇, 吴壮志. 开“窗”结构对环帆伞开伞过程影响[J]. 航空学报, 2023, 44(5): 226936-226936. |
[7] | 何磊, 钱炜祺, 董康生, 易贤, 柴聪聪. 基于卷积神经网络的结冰翼型气动特性建模[J]. 航空学报, 2023, 44(5): 126434-126434. |
[8] | 武宇飞, 龙腾, 史人赫, 张尧. 跨域变体飞行器气动力热非层次多模型融合降阶方法[J]. 航空学报, 2023, 44(21): 528259-528259. |
[9] | 周伟, 马培洋, 郭正, 王道平, 周睿孙. 基于翼尖链翼的组合固定翼无人机研究[J]. 航空学报, 2022, 43(9): 325946-325946. |
[10] | 伍强, 徐浩军, 魏扬, 裴彬彬, 薛源. 结冰条件下飞机气动/运动耦合特性[J]. 航空学报, 2022, 43(8): 125566-125566. |
[11] | 王晨, 杨洋, 沈星, 夏育颖. 用于变体飞行器的波纹板等效强度模型及其优化设计[J]. 航空学报, 2022, 43(6): 526146-526146. |
[12] | 徐欣, 贾贺, 陈雅倩, 荣伟, 蒋伟, 薛晓鹏. 织物透气性对火星用降落伞气动特性影响机理[J]. 航空学报, 2022, 43(12): 126289-126289. |
[13] | 冉茂鹏, 王成才, 刘华华, 王薇, 吕金虎. 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022, 43(10): 527449-527449. |
[14] | 张阳, 周洲, 郭佳豪. 分布式涵道风扇喷流对后置机翼的气动性能影响[J]. 航空学报, 2021, 42(9): 224977-224977. |
[15] | 彭连松, 郑孟宗, 潘天宇, 苏冠廷, 李秋实. 翼间干涉效应对蜻蜓悬停气动性能的影响[J]. 航空学报, 2021, 42(7): 124571-124571. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学