航空学报 > 2024, Vol. 45 Issue (23): 429795-429795   doi: 10.7527/S1000-6893.2024.29795

金属薄板厚度激光电磁超声谐振测量方法

郭伟, 石文泽, 卢超(), 胡博, 刘远   

  1. 南昌航空大学 无损检测教育部重点实验室,南昌 330063
  • 收稿日期:2023-10-30 修回日期:2023-11-13 接受日期:2024-03-04 出版日期:2024-03-29 发布日期:2024-03-14
  • 通讯作者: 卢超 E-mail:luchaoniat@163.com
  • 基金资助:
    中央军民融合专项转移支付项目(GT202408141);国防基础科研计划(JCKY2022401C005);国家自然科学基金(52065049);江西省杰出青年基金(20212ACB214010);江西省主要学科学术和技术带头人培养计划(20204BCJL22039);江西省重点研发计划(20212BBE51006);江西省自然科学青年基金(20224BAB214052);南昌航空大学研究生创新专项资金项目(YC2022-096)

Laser-electromagnetic ultrasonic resonance measurement method for metal sheet thickness

Wei GUO, Wenze SHI, Chao LU(), Bo HU, Yuan LIU   

  1. Key Laboratory of Nondestructive Testing,Ministry of Education,Nanchang Hangkong University,Nanchang 330063,China
  • Received:2023-10-30 Revised:2023-11-13 Accepted:2024-03-04 Online:2024-03-29 Published:2024-03-14
  • Contact: Chao LU E-mail:luchaoniat@163.com
  • Supported by:
    Central Military-civilian Integration Special Transfer Payment Project(GT202408141);Fundamental Research Program of Commission of Science Technology and Industry for National Defence(JCKY2022401C005);National Natural Science Foundation of China(52065049);Jiangxi Province Funds for Distinguished Young Youths(20212ACB214010);Training Program for Academic and Technical Leaders of Major Disciplines in Jiangxi Province(20204BCJL22039);Key Research and Development Plan of Jiangxi Province(20212BBE51006);Jiangxi Provincial Natural Science Youth Fund(20224BAB214052);Graduate Innovation Fund Project of Nanchang Hangkong University(YC2022-096)

摘要:

铝合金、不锈钢、镍基合金等材料广泛应用于航天航空热端部件。实现金属材料在交变机械载荷和高温高压燃气体冲蚀下的厚度测量,对提高金属构件服役的可靠性和安全性具有重要意义。针对航空发动机、固体火箭等热端部件材料在高温振动环境中的厚度在线检测与监测难题,提出了一种基于横波谐振频谱测厚的激光电磁超声技术。以铝合金5083、不锈钢304、镍基合金GH4169这3种金属材料的试样为检测对象,建立了激光电磁超声横波谐振检测有限元模型,分析了激光光斑直径、电磁超声换能器(EMAT)线圈直径、线圈线径、提离等参数对谐振点频率和回波幅值的影响,并开展了常温、高温金属试样谐振测厚实验。研究结果表明,当激光光斑直径、EMAT线圈外径、线径、提离分别为4、12、0.26、0.3 mm时,Laser-EMAT超声回波幅值最高。当上述3种金属材料试样厚度为0.5~3.0 mm时,谐振法测厚的最大偏差不超过2%、6%、4%,且可以应用于此3种金属材料在至少450 ℃高温条件的厚度测量。

关键词: 铝合金5083, 镍基合金, 不锈钢304, 激光电磁超声, 谐振测厚

Abstract:

Aluminum alloys, stainless steel, nickel-based alloys, and other materials are widely used in aerospace hot-end components. The thickness measurement of metal materials under alternating mechanical loads and high-temperature and high-pressure gas erosion is significant for improving the reliability and safety of metal components in service. A laser electromagnetic ultrasonic thickness measurement technology based on the shear wave resonance spectrum is proposed to address online thickness detection challenges and monitor hot-end component materials such as aircraft engines and solid rockets in high-temperature vibration environments. A finite element model for laser electromagnetic ultrasonic shear wave resonance detection was established using samples of three metal materials: aluminum alloy 5083, stainless steel 304, and nickel-based alloy GH4169. The effects of parameters such as laser spot diameter, Electromagnetic Acoustic Transducer (EMAT) coil diameter, coil wire diameter, and lift-off on the resonance frequency point and echo amplitude were analyzed, and resonance thickness measurement experiments were conducted on metal samples at room temperature and high temperatures. Research has shown that when the laser spot diameter, EMAT coil outer diameter, line diameter, and lift-off are 4 mm, 12 mm, 0.26 mm, and 0.30 mm, respectively, the laser EMAT ultrasound echo amplitude is the highest. When the thickness of the three metal material samples mentioned above ranges from 0.5 mm to 3.0 mm, the deviation of the resonance method for thickness measurement does not exceed 2%, 6%, and 4%, and it can be applied to thickness measurement of the three metal materials under high-temperature conditions of more than 450 ℃.

Key words: aluminum alloy 5083, nickel-based alloys, stainless steel 304, laser-electromagnetic ultrasound, resonance thickness measurement

中图分类号: