航空学报 > 2024, Vol. 45 Issue (7): 428971-428971   doi: 10.7527/S1000-6893.2023.28971

CNT树脂基复合材料断裂韧性的优化设计

贾文斌1,2(), 方磊2, 张根3, 史剑3, 何泽侃1, 宣海军1   

  1. 1.浙江大学 能源工程学院,杭州 310027
    2.南京航空航天大学 能源与动力学院,南京 210016
    3.中国航发四川燃气涡轮研究院,成都 610500
  • 收稿日期:2023-05-08 修回日期:2023-06-02 接受日期:2023-07-11 出版日期:2024-04-15 发布日期:2023-07-14
  • 通讯作者: 贾文斌 E-mail:jiawenbin@zju.edu.cn
  • 基金资助:
    国家资助博士后研究人员计划(GZC20232263);国家自然科学基金青年科学基金(52305165)

Optimal design of fracture toughness for CNT⁃epoxy composites

Wenbin JIA1,2(), Lei FANG2, Gen ZHANG3, Jian SHI3, Zekan HE1, Haijun XUAN1   

  1. 1.College of Energy Engineering,Zhejiang University,Hangzhou 310027,China
    2.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    3.AECC Sichuan Gas Turbine Establishment,Chengdu 610500,China
  • Received:2023-05-08 Revised:2023-06-02 Accepted:2023-07-11 Online:2024-04-15 Published:2023-07-14
  • Contact: Wenbin JIA E-mail:jiawenbin@zju.edu.cn
  • Supported by:
    Postdoctoral Fellowship Program of CPSF(GZC20232263);Young Scientist Fund of National Natural Science Foundation of China(52305165)

摘要:

与碳纤维相比,碳纳米管(CNT)具有更高的力学性能和更低的密度,是理想的树脂基复合材料增强相,在航空航天领域具有广阔应用前景。提出一套CNT树脂基复合材料单边缺口弯曲(SENB)试件制备工艺以及微纳观结构和参数的测量方法。采用不同长度的多壁碳纳米管和不同时长的臭氧处理,制备出SENB试件进行断裂韧性实验,定量分析微纳观参数界面长度和C—C键密度对宏观断裂韧性的影响,提出断裂韧性优化方案。研究结果表明:界面C—C键密度和臭氧处理时间呈线性关系;相对增韧率随着臭氧处理时间先大幅增加后大幅下降,即存在临界界面C—C键密度使得复合材料的相对增韧率最大;弱界面的相对增韧率随着界面长度先大幅增加后略微下降;强界面的相对增韧率随着界面长度先大幅增加后大幅下降;当断面的CNT拔出和拔断的占比相近(即复合材料失效形式从CNT拔出转变为拔断)时断裂韧性最大。

关键词: 界面长度, 界面C—C键密度, CNT复合材料, 断裂韧性, 优化设计

Abstract:

Compared with carbon fiber, Carbon Nanotube (CNT) is the ideal reinforcement phase for the epoxy composites,which has higher mechanical properties and lower density and, the great potential application in the aerospace field. A processing scheme was proposed for the CNT-epoxy Single-Edge Notched Bend (SENB) specimens, and the measuring methods of microscopic structure and parameters were proposed. The fracture toughness tests were conducted on the SENB specimens with different MWCNT lengths and oxidation times. The effects of the interfacial length and interfacial C—C bond density on the fracture toughness were quantitatively analyzed, and the fracture toughness optimization scheme was proposed. The experimental results show that: the interfacial C—C bond density and ozone oxidation time of CNTs show linear relationship; the relative fracture toughness enhancement rate increases rapidly with the increase of the ozone oxidation time, and then decreases dramatically. This means that there exists a critical interfacial C—C bond density, where the relative fracture toughness enhancement rate reaches maximum; for the weak interface, the relative fracture toughness enhancement rate increases rapidly with the increase of the interfacial length, and then decreases slightly; for the strong interface, the relative fracture toughness enhancement rate increases rapidly with the increase of the interfacial length, and then decreases dramatically; the fracture toughness reaches maximum, when the amounts of CNT pullout and CNT fracture are approximately equal,which means that the fracture toughness reaches maximum under the transition condition of the failure mode from the CNT pullout to CNT fracture.

Key words: interfacial length, interfacial C—C bond density, CNT composites, fracture toughness, optimal design

中图分类号: