1 |
赵欢. 基于代理模型的高效气动优化与气动稳健设计方法研究[D]. 西安: 西北工业大学, 2020.
|
|
ZHAO H. Research on efficient surrogate-based aerodynamic optimization and robust aerodynamic design methods[D]. Xi’an :Northwestern Polytechnical, 2020 (in Chinese).
|
2 |
韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报,2020, 41(3): 623344.
|
|
HAN Z H, XU C Z, QIAO J L,et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623344 (in Chinese).
|
3 |
HUANG J, GAO Z, ZHAO K,et al. Robust design of supercritical wing aerodynamic optimization considering fuselage interfering[J]. Chinese Journal of Aeronautics, 2010, 23(5): 523-528.
|
4 |
CHERNUKHIN O, ZINGG D W. Multimodality and global optimization in aerodynamic design[J]. AIAA Journal, 2013, 51(6): 1342-1354.
|
5 |
BONS N P, HE X L, MADER C A,et al. Multimodality in aerodynamic wing design optimization[J]. AIAA Journal, 2019, 57(3): 1004-1018.
|
6 |
POOLE D, ALLEN C, RENDALL T. Global optimization of wing aerodynamic optimization case exhibiting multimodality[J]. Journal of Aircraft, 2018, 55 (4): 1576-1591.
|
7 |
ZHAO H, GAO Z, GAO Y, et al. Effective robust design of high lift NLF airfoil under multi-parameter uncertainty[J]. Aerospace Science and Technology, 2017, 68:530-542.
|
8 |
赵欢,高 正红, 夏露. 高速自然层流翼型高效气动稳健优化设计方法研究[J]. 航空学报, 2021, 42(7): 124894.
|
|
ZHAO H, GAO Z H, XIA L. Research on efficient robust aerodynamic design optimization method of high-speed and high-lift NLF airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124894 (in Chinese).
|
9 |
ZHAO H, GAO Z. Uncertainty-based design optimization of NLF airfoil for high altitude long endurance unmanned air vehicles[J]. Engineering Computations, 2019, 36(3):971-996.
|
10 |
ZHAO H, GAO Z, XU F,et al. Review of robust aerodynamic design optimization for air vehicles[J]. Archives of Computational Methods in Engineering,2019,26(3):685-732.
|
11 |
ZHAO K, GAO Z, HUANG J,et al. Aerodynamic optimization of rotor airfoil based on multi-layer hierarchical constraint method[J]. Chinese Journal of Aeronautics, 2016,29(6): 1541-1552.
|
12 |
QUEIPO N V, HAFTKA R T, SHYY W, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences,2005, 41(1): 1-28.
|
13 |
ZHAO H, GAO Z, XU F, et al. An efficient adaptive forward⁃backward selection method for sparse polynomial chaos expansion[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 355: 456-491.
|
14 |
ZHAO H, GAO Z, XU F, et al. Adaptive multi-fidelity sparse polynomial chaos-Kriging metamodeling for global approximation of aerodynamic data[J]. Structural and Multidisciplinary Optimization, 2021, 64(2): 829-858.
|
15 |
LAURENCEAU J, SAGAUT P. Building efficient response surfaces of aerodynamic functions with kriging and cokriging[J]. AIAA Journal, 2008, 46(2): 498-507.
|
16 |
HAN Z H, ZHANG Y, SONG C X,et al. Weighted gradient-enhanced kriging for high-dimensional surrogate modeling and design optimization[J]. AIAA Journal, 2017, 55(12): 4330-4346.
|
17 |
GUO L, NARAYAN A, ZHOU T. A gradient enhanced ℓ1-minimization for sparse approximation of polynomial chaos expansions[J]. Journal of Computational Physics,2018, 367: 49-64.
|
18 |
SOBOL I M. Sensitivity estimates for nonlinear mathematical models[J]. Mathematical Modelling and Computational Experiments, 1993, 1(4): 407-414.
|
19 |
SHAN S, WANG G G. Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions[J]. Structural and Multidisciplinary Optimization, 2010, 41(2): 219-241.
|
20 |
LI G, WANG S W, RABITZ H,et al.Global uncertainty assessments by high dimensional model representations(HDMR)[J]. Chemical Engineering Science, 2002, 57(21): 4445-4460.
|
21 |
ROY P C, DEB K. High dimensional model representation for solving expensive multi-objective optimization problems[C]∥ 2016 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2016.
|
22 |
DIEZ M, CAMPANA E F, STERN F. Design-space dimensionality reduction in shape optimization by Karhunen⁃Loève expansion[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 1525-1544.
|
23 |
BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25(1):539-575.
|
24 |
MOHAMMADI A, RAISEE M. Efficient uncertainty quantification of stochastic heat transfer problems by combination of proper orthogonal decomposition and sparse polynomial chaos expansion[J]. International Journal of Heat Mass Transfer, 2019, 128: 581-600.
|
25 |
MOHAMMADI A, RAISEE M. Stochastic field representation using bi-fidelity combination of proper orthogonal decomposition and Kriging[J]. Computer Methods in Applied Mechanics and Engineering,2019,357:112589.
|
26 |
MAATEN V D L, POSTMA E, HERIK V D J. Dimensionality reduction:A comparative[J]. Journal of Machine Learning Research, 2009, 10 (66-71): 13.
|
27 |
CONSTANTINE P G, DOW E, WANG Q. Active subspace methods in theory and practice:Applications to kriging surfaces[J]. SIAM Journal on Scientific Computing,2014, 36(4): A1500-A1524.
|
28 |
GENG X, ZHAN D C, ZHOU Z H. Supervised nonlinear dimensionality reduction for visualization and classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2005, 35(6): 1098-1107.
|
29 |
LI J C, CAI J S, QU K. Surrogate-based aerodynamic shape optimization with the active subspace method[J]. Structural and Multidisciplinary Optimization, 2019, 59(2): 403-419.
|
31 |
TRIPATHY R K, BILIONIS I. Deep UQ:Learning deep neural network surrogate models for high dimensional uncertainty quantification[J]. Journal of Computational Physics, 2018, 375: 565-588.
|
32 |
GENEVA N, ZABARAS N. Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks[J]. Journal of Computational Physics, 2019,383: 125-147.
|
33 |
QIN T, WU K L, XIU D B. Data driven governing equations approximation using deep neural networks[J]. Journal of Computational Physics, 2019, 395: 620-635.
|
34 |
LYU Z, KENWAY G K W, MARTINS J R R A. Aerodynamic shape optimization investigations of the common research model wing benchmark[J]. AIAA Journal, 2015, 53(4): 968-985.
|
35 |
LIANG H Q, ZHU M, WU Z. Using cross-validation to design trend function in kriging surrogate modeling[J]. AIAA Journal, 2014, 52(10): 2313-2327.
|
36 |
LEDOUX S T, VASSBERG J C, YOUNG D P,et al. Study based on the AIAA aerodynamic design optimization discussion group test cases[J]. AIAA Journal, 2015,53(7): 1910-1935.
|
37 |
赵欢, 高正红, 王超, 等. 适用于高速层流翼型的计算网格研究[J]. 应用力学学报, 2018, 35(2): 351-357, 454.
|
|
ZHAO H, GAO Z H, WANG C,et al. Research on the computing grid of high speed laminar airfoil[J]. Chinese Journal of Applied Mechanics,2018, 35(2): 351-357,454 (in Chinese).
|
38 |
HAN Z, XU C, ZHANG L, et al. Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids[J]. Chinese Journal of Aeronautics, 2020, 33(1): 31-47.
|
39 |
ZHANG Y, HAN Z H, SHI L X,et al. Multi-round surrogate-based optimization for benchmark aerodynamic design problems[C]∥ 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016.
|
40 |
ZHAO H, GUO Z H, XIA L. Efficient aerodynamic analysis and optimation under uncertainty using multi-fidelity polynomial chaos-Kriging surrogate model [J]. Computers & Fluids, 2022, 246: 105643.
|