1 |
韩忠华, 张瑜, 许晨舟, 等. 基于代理模型的大型民机机翼气动优化设计[J]. 航空学报, 2019, 40(1): 522398.
|
|
HAN Z H, ZHANG Y, XU C Z, et al. Aerodynamic optimization design of large civil aircraft wings using surrogate-based model[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522398 (in Chinese).
|
2 |
耿延升, 艾梦琪, 王伟, 等. 高效层流翼型设计及试验验证[J]. 航空学报, 2022, 43(11): 112-122.
|
|
GENG Y S, AI M Q, WANG W, et al. Efficient design and experimental verification of laminar airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 112-122 (in Chinese).
|
3 |
袁吉森, 孙爵, 李玲玉, 等. 超声速飞机层流布局设计与评估技术进展[J]. 航空学报, 2022, 43(11): 526316.
|
|
YUAN J S, SUN J, LI L Y, et al. Progress of supersonic aircraft laminar flow layout design and evaluation technologies[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 526316 (in Chinese).
|
4 |
王迅, 蔡晋生, 屈崑, 等. 基于改进CST参数化方法和转捩模型的翼型优化设计[J]. 航空学报, 2015, 36(2): 449-461.
|
|
WANG X, CAI J S, QU K, et al. Airfoil optimization based on improved CST parametric method and transition model[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 449-461 (in Chinese).
|
5 |
李嘉, 韩小宝, 李华聪, 等. 基于改进Bezier曲线的复合叶轮式离心泵参数化设计及性能仿真[J]. 推进技术, 2022, 43(7): 394-403.
|
|
LI J, HAN X B, LI H C, et al. Parametric design and simulation for an aero-fuel centrifugal pump with compound impeller based on improved bezier-curve[J]. Journal of Propulsion Technology, 2022, 43(7): 394-403 (in Chinese).
|
6 |
张伟, 高正红, 周琳, 等. 基于代理模型全局优化的自适应参数化方法[J]. 航空学报, 2020, 41(10): 123815.
|
|
ZHANG W, GAO Z H, ZHOU L, et al. Adaptive parameterization method for surrogate-based global optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123815 (in Chinese).
|
7 |
陈颂, 白俊强, 孙智伟, 等. 基于DFFD技术的翼型气动优化设计[J]. 航空学报, 2014, 35(3): 695-705.
|
|
CHEN S, BAI J Q, SUN Z W, et al. Aerodynamic optimization design of airfoil using DFFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 695-705 (in Chinese).
|
8 |
陈学孔, 郭正, 易凡, 等. 低雷诺数翼型的气动外形优化设计[J]. 空气动力学学报, 2014, 32(3): 300-307.
|
|
CHEN X K, GUO Z, YI F, et al. Aerodynamic shape optimization and design of airfoils with low Reynolds number[J]. Acta Aerodynamica Sinica, 2014, 32(3): 300-307 (in Chinese).
|
9 |
KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158.
|
10 |
SHAN S Q, WANG G G. Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions[J]. Structural and Multidisciplinary Optimization, 2010, 41(2): 219-241.
|
11 |
QIU Y S, BAI J Q, LIU N, et al. Global aerodynamic design optimization based on data dimensionality reduction[J]. Chinese Journal of Aeronautics, 2018, 31(4): 643-659.
|
12 |
VISWANATH A, FORRESTER A I J, KEANE A J. Constrained design optimization using generative topographic mapping[J]. AIAA Journal, 2014, 52(5): 1010-1023.
|
13 |
GREY Z J, CONSTANTINE P G. Active subspaces of airfoil shape parameterizations[J]. AIAA Journal, 2018, 56(5): 2003-2017.
|
14 |
王娜娜, 解青, 苏星宇, 等. 湍流燃烧机理和调控的活性子空间分析方法[J]. 航空学报, 2021, 42(12): 625228.
|
|
WANG N N, XIE Q, SU X Y, et al. Active subspace methods for analysis and optimization of turbulent combustion[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 625228 (in Chinese).
|
15 |
杨倩, 郭晓峰, 李芹, 等. 基于POD和代理模型的热气防冰性能预测方法[J]. 航空学报, 2023, 44(1): 626992.
|
|
YANG Q, GUO X F, LI Q, et al. Hot air anti-icing performance estimation method based on POD and surrogate model[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 626992 (in Chinese).
|
16 |
张威, 王强, 路嘉晨, 等. 基于PCA-HicksHenne方法的几何不确定性稳健优化设计[J]. 北京航空航天大学学报, 2022, 48(12): 2473-2481.
|
|
ZHANG W, WANG Q, LU J C, et al. Robust optimization design under geometric uncertainty based on PCA-HicksHenne method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2473-2481 (in Chinese).
|
17 |
WU X J, ZHANG W W, PENG X H, et al. Benchmark aerodynamic shape optimization with the POD-based CST airfoil parametric method[J]. Aerospace Science and Technology, 2019, 84: 632-640.
|
18 |
吴则良, 叶建川, 王江, 等. 基于深度自动编码器神经网络的飞行器翼型参数降维与优化设计[J]. 兵工学报, 2022, 43(6): 1326-1336.
|
|
WU Z L, YE J C, WANG J, et al. Parameter dimensionality reduction and optimal design of aircraft airfoil based on deep autoencoder neural network[J]. Acta Armamentarii, 2022, 43(6): 1326-1336 (in Chinese).
|
19 |
CHEN W, CHIU K, FUGE M D. Airfoil design parameterization and optimization using Bézier generative adversarial networks[J]. AIAA Journal, 2020, 58(11): 4723-4735.
|
20 |
DU X S, HE P, MARTINS J R R A. A B-spline-based generative adversarial network model for fast interactive airfoil aerodynamic optimization[C]∥ AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
|
21 |
关晓辉, 李占科, 宋笔锋. CST气动外形参数化方法研究[J]. 航空学报, 2012, 33(4): 625-633.
|
|
GUAN X H, LI Z K, SONG B F. A study on CST aerodynamic shape parameterization method[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 625-633 (in Chinese).
|
22 |
孙智伟, 白俊强, 高正红, 等. 现代超临界翼型设计及其风洞试验[J]. 航空学报, 2015, 36(3): 804-818.
|
|
SUN Z W, BAI J Q, GAO Z H, et al. Design and wind tunnel test investigation of the modern supercritical airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 804-818 (in Chinese).
|
23 |
KULFAN B, BUSSOLETTI J. “Fundamental” parameteric geometry representations for aircraft component shapes[C]∥ Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2006.
|
24 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
|
25 |
吴秋雨. 基于生成式对抗网络的气动外形优化方法研究[D]. 成都: 电子科技大学, 2021: 20-21.
|
|
WU Q Y. Research on aerodynamic shape optimization method based on generative adversarial network[D]. Chengdu: University of Electronic Science and Technology of China, 2021: 20-21 (in Chinese).
|
26 |
CHEN X, DUAN Y, HOUTHOOFT R, et al. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets[DB/OL]. arXiv preprint: 1606.03657, 2016. .
|
27 |
KINGMA D P, BA J. Adam: A method for stochastic optimization[DB/OL]. arXiv preprint: 1412.6980, 2014.
|
28 |
Gretton A, Borgwardt K M, Rasch M J, et al. A kernel two-sample test[J]. The Journal of Machine Learning Research, 2012, 13(1): 723-773.
|
29 |
ANTUNES A P, AZEVEDO J L F. Studies in aerodynamic optimization based on genetic algorithms[J]. Journal of Aircraft, 2014, 51(3): 1002-1012.
|
30 |
DRELA M. XFOIL: An analysis and design system for low Reynolds number airfoils[C]∥MUELLER TJ. Low Reynolds number aerodynamics. Berlin: Springer, 1989: 1-12.
|
31 |
王超. 基于代理模型的高效气动优化与高维多目标问题研究[D]. 西安: 西北工业大学, 2018: 57-58.
|
|
WANG C. Research on surrogate-based efficient aerodynamic optimization and many-objective problems[D]. Xi’an: Northwestern Polytechnical University, 2018: 57-58 (in Chinese).
|