1 |
COUSTOLS E, COUSTEIX J. Performances of riblets in the supersonic regime[J]. AIAA Journal, 32(2): 431-433.
|
2 |
SANDRA C, VIVIANA L. Influence of Mach number and static pressure on plasma flow control of supersonic and rarefied flows around a sharp flat plate[J]. Experiments in Fluids, 2017, 58(6):74-74.
|
3 |
HUANG J, YAO W, SHAN X. Coupled fluid-thermal investigation on non-ablative thermal protection system with spiked body and opposing jet combined configuration[J]. Chinese Journal of Aeronautics, 2019, 32(6):1390-1402.
|
4 |
JIANG Z L, LIU Y F, HAN G L, et al. Experimental demonstration of a new concept of drag reduction and thermal protection for hypersonic vehicles[J]. Acta Mechanica Sinica, 2009,25(3): 417-419.
|
5 |
XIE W, LUO Z, ZHOU Y, et al. Experimental and numerical investigation on opposing plasma synthetic jet for drag reduction[J]. Chinese Journal of Aeronautics, 2022, 35 (8):75-91.
|
6 |
KAMETANI Y, KOTAKE A, FUKAGATA K, et al. Drag reduction capability of uniform blowing in supersonic wall-bounded turbulent flows[J]. Physical Review Fluids, 2017, 2(12): 123904.
|
7 |
KUMAR R, ALI M Y, ALVI F S, et al. Generation and control of oblique shocks using microjets[J]. AIAA Journal, 2011, 49(12): 2751-2759.
|
8 |
吴忧, 徐旭, 陈兵, 等. 高马赫数下横/逆向喷流干扰流场数值研究[J]. 航空学报, 2021, 42(S1): 726359.
|
|
WU Y, XU X, CHEN B, et al. Numerical study on transverse/opposing jet interaction flowfield under high Mach number[J]. Acta Aeronauticaet Astronautica Sinica, 2021, 42(S1): 726359 (in Chinese).
|
9 |
王泽江, 李杰, 曾学军, 等. 逆向喷流对双锥导弹外形减阻特性的影响[J]. 航空学报, 2020, 41(12): 124116.
|
|
WANG Z J, LI J, ZENG X J, et al. Effect of opposing jet on drag reduction characteristics of double-cone missile shape[J]. Acta Aeronauticaet et Astronautica Sinica, 2020, 41(12): 124116 (in Chinese).
|
10 |
VENUKUMAR B, JAGADEESH G, REDDY K. Counterflow drag reduction by supersonic jet for a blunt body in hypersonic flow[J]. Physics of Fluids, 2006, 18(11):471.
|
11 |
WANG H, JUN L I, JIN D, et al. Effect of a transverse plasma jet on a shock wave induced by a ramp[J]. Chinese Journal of Aeronautics, 2017, 30(6): 1854-1865.
|
12 |
DUAN L, CHOUDHARI M M. Direct numerical simulations of high-speed turbulent boundary layers over riblets: AIAA-2014-0934[R].Reston:AIAA,2014.
|
13 |
AHMED M Y M, QIN N. Metamodels for aerothermodynamic design optimization of hypersonic spiked blunt bodies[J]. Aerospace science and technology, 2010, 14(5):364-376.
|
14 |
何坤, 袁化成. 典型激波针减阻降热特性及流动机理[J]. 航空动力学报, 2022, 37(5): 1064-1078
|
|
HE K, YUAN H C. Drag and heat reduction characteristics and flow mechanism of typical aero-spikes[J]. Journal of Aerospace Power, 2022,37(5):1064-1078 (in Chinese).
|
15 |
SCHÜLEIN E. Wave drag reduction approach for blunt bodies at high anngles of attack: proof-of-concept experiments: AIAA-2008- 4000 [R].Reston:AIAA,2008.
|
16 |
ROBINSON S K. Effects of riblets on turbulence in a supersonic boundary layer: AIAA-1988-2526[R].Reston:AIAA,1988.
|
17 |
FARR R, CHANG C L, JONES J H, et al. On the comparison of the long penetration mode (LPM) supersonic counterflowing jet to the supersonic screech jet: AIAA-2015-3126[R].Reston:AIAA,2015.
|
18 |
VENKATACHARI B S, CHENG G C, CHANG C L. Effect of counterflowing jet on supersonic slender-body configurations: a numerical study[J]. Journal of Spacecraft and Rockets, 2020, 57(6): 1204-1221.
|
19 |
DENG F, XIE F, QIN N, et al. Drag reduction investigation for hypersonic lifting-body vehicles with aerospike and long penetration mode counterflowing jet[J]. Aerospace Science and Technology, 2018, 76:361-373.
|
20 |
SUN X W, GUO Z Y, HUANG W, et al. A study of performance parameters on drag and heat flux reduction efficiency of combinational novel cavity and opposing jet concept in hypersonic flows[J]. Acta Astronautica, 2017, 131: 204-225.
|
21 |
CYBYK B, GROSSMAN K, VAN W D. Computational assessment of the SparkJet flow control actuator: AIAA-2003-3711[R].Reston:AIAA,2003.
|
22 |
TANG M, YUN W, WANG H, et al. Characterization of transverse plasma jet and its effects on ramp induced separation[J]. Experimental Thermal and Fluid Science, 2018, 99:584-594.
|
23 |
周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027.
|
|
ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese).
|
24 |
LI Z, SHI Z, DU H. Analytical model: Characteristics of nanosecond pulsed plasma synthetic jet actuator in multiple-pulsed mode [J]. Advances in Applied Mathematics and Mechanics, 2017, 9(2): 439-462.
|