[1] 陈坚强. 国家数值风洞工程(NNW)关键技术研究进展[J/OL]. 中国科学:技术科学, (2021-04-28)[2021-05-15]. https://kns.cnki.net/kcms/detail/11.5844.TH.202104-28.0914.006.html CHEN J Q. Advances in the key technologies of Chinese National Numerical Wind Tunnel Project[J/OL]. Scientia Sinica Technologica, (2021-04-28)[2021-05-15]. https://kns.cnki.net/kcms/detail/11.5844.TH.20210428.0914.006.html (in Chinese). [2] PARK M A, LOSEILLE A, KRAKOS J, et al. Unstructured grid adaptation:Status, potential impacts, and recommended investments towards CFD 2030[C]//46th AIAA Fluid Dynamics Conference. Reston:AIAA, 2016. [3] BARTH T, RAPHAèLE H, OHLBERGER M. Finite volume methods:Foundation and analysis[M]//Encyclopedia of Computational Mechanics. 2nd ed. Hoboken:John Wiley & Sons, Ltd., 2017:1-60. [4] VAN LEER B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 32(1):101-136. [5] BARTH T, FREDERICKSON P. Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction[C]//28th Aerospace Sciences Meeting. Reston:AIAA, 1990. [6] BARTH T, JESPERSEN D. The design and application of upwind schemes on unstructured meshes[C]//27th Aerospace Sciences Meeting. Reston:AIAA, 1989. [7] VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady state solutions[C]//31st Aerospace Sciences Meeting. Reston:AIAA, 1993. [8] HU C Q, SHU C W. Weighted essentially non-oscillatory schemes on triangular meshes[J]. Journal of Computational Physics, 1999, 150(1):97-127. [9] ABGRALL R. On essentially non-oscillatory schemes on unstructured meshes:Analysis and implementation[J]. Journal of Computational Physics, 1994, 114(1):45-58. [10] HAIDER F, CROISILLE J P, COURBET B. Stability analysis of the cell centered finite-volume MUSCL method on unstructured grids[J]. Numerische Mathematik, 2009, 113(4):555-600. [11] REED W. Triangular mesh difference schemes for the transport equation:LA-4769[R]. Los Alamos:Office of Scientific and Technical Information (OSTI), 1971. [12] COCKBURN B, SHU C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II:General framework[J]. Mathematics of Computation, 1989, 52(186):411-435. [13] COCKBURN B, HOU S, SHU C W. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case[J]. Mathematics of Computation, 1990, 54(190):545-581. [14] WANG Z J, ZHANG L P, LIU Y. Spectral (finite) volume method for conservation laws on unstructured grids IV:Extension to two-dimensional systems[J]. Journal of Computational Physics, 2004, 194(2):716-741. [15] LIU Y, VINOKUR M, WANG Z J. Spectral difference method for unstructured grids I:Basic formulation[J]. Journal of Computational Physics, 2006, 216(2):780-801. [16] HUYNH H T. A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods[C]//18th AIAA Computational Fluid Dynamics Conference. Reston:AIAA, 2007. [17] WANG Z J, GAO H Y. A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids[J]. Journal of Computational Physics, 2009, 228(21):8161-8186. [18] DUMBSER M, BALSARA D S, TORO E F, et al. A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes[J]. Journal of Computational Physics, 2008, 227(18):8209-8253. [19] DUMBSER M. Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier-Stokes equations[J]. Computers & Fluids, 2010, 39(1):60-76. [20] LUO H, LUO L Q, NOURGALIEV R, et al. A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids[J]. Journal of Computational Physics, 2010, 229(19):6961-6978. [21] LUO H, XIA Y D, LI S J, et al. A Hermite WENO reconstruction-based discontinuous Galerkin method for the Euler equations on tetrahedral grids[J]. Journal of Computational Physics, 2012, 231(16):5489-5503. [22] ZHANG L P, LIU W, HE L X, et al. A class of hybrid DG/FV methods for conservation laws II:Two-dimensional cases[J]. Journal of Computational Physics, 2012, 231(4):1104-1120. [23] SHI L, WANG Z J, ZHANG L P, et al. A PNPM-CPR framework for hyperbolic conservation laws[J]. Journal of Scientific Computing, 2014, 61(2):281-307. [24] II S, XIAO F. CIP/multi-moment finite volume method for Euler equations:A semi-Lagrangian characteristic formulation[J]. Journal of Computational Physics, 2007, 222(2):849-871. [25] WANG Q, REN Y X, LI W N. Compact high order finite volume method on unstructured grids I:Basic formulations and one-dimensional schemes[J]. Journal of Computational Physics, 2016, 314:863-882. [26] WANG Q, REN Y X, LI W N. Compact high order finite volume method on unstructured grids II:Extension to two-dimensional Euler equations[J]. Journal of Computational Physics, 2016, 314:883-908. [27] WANG Q, REN Y X, PAN J H, et al. Compact high order finite volume method on unstructured grids III:Variational reconstruction[J]. Journal of Computational Physics, 2017, 337:1-26. [28] ZHANG Y S, REN Y X, WANG Q. Compact high order finite volume method on unstructured grids IV:Explicit multi-step reconstruction schemes on compact stencil[J]. Journal of Computational Physics, 2019, 396:161-192. [29] LUO H, BAUM J, LOHNER R. A discontinuous Galerkin method using Taylor basis for compressible flows on arbitrary grids[J]. Journal of Computational Physics, 2008, 227(20):8875-8893. [30] HARTEN A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49(3):357-393. [31] SHU C W. TVB uniformly high-order schemes for conservation laws[J]. Mathematics of Computation, 1987, 49(179):105-121. [32] Godunov S K. A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations[J]. Mathematics of the USSR Sbornik, 1959, 47:271-306. [33] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372. [34] OSHER S, SOLOMON F. Upwind difference schemes for hyperbolic systems of conservation laws[J]. Mathematics of Computation, 1982, 38(158):339-374. [35] TORO E F, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL-Riemann solver[J]. Shock Waves, 1994, 4(1):25-34. [36] MATANIA B A, JOSEPH F. Generalized Riemann problems:From the scalar equation to multidimensional fluid dynamics[M]//Recent Advances in Computational Sciences:Selected Papers from the International Workshop on Computational Sciences and Its Education. Singapore:World Scientific Publishing Co. Pte. Ltd., 2015:1-49. [37] TORO E F, TITAREV V A. Derivative Riemann solvers for systems of conservation laws and ADER methods[J]. Journal of Computational Physics, 2006, 212(1):150-165. [38] XU K. A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method[J]. Journal of Computational Physics, 2001, 171(1):289-335. [39] LI J Q, DU Z F. A two-stage fourth order time-accurate discretization for Lax-Wendroff type flow solvers. I. Hyperbolic conservation laws[J]. SIAM Journal on Scientific Computing, 2016, 38(5):A3046-A3069. [40] STEGER J L, WARMING R F. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods[J]. Journal of Computational Physics, 1981, 40(2):263-293. [41] LIOU M S, STEFFEN C J JR. A new flux splitting scheme[J]. Journal of Computational Physics, 1993, 107(1):23-39. [42] JAMESON A. Origins and further development of the Jameson-Schmidt-Turkel scheme[J]. AIAA Journal, 2017, 55(5):1487-1510. [43] KURGANOV A, TADMOR E. New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations[J]. Journal of Computational Physics, 2000, 160(1):241-282. [44] 王乾. 非结构网格紧致高精度有限体积方法[M]. 北京:清华大学出版社, 2020:1-159. WANG Q. Compact high-order finite volume method on unstructured grids[M]. Beijing:Tsinghua University Press, 2020:1-159(in Chinese). [45] 关治, 陆金甫. 数值分析基础[M]. 北京:高等教育出版社, 1998. GUAN Z, LU J F. Fundamentals of numerical analysis[M]. Beijing:Higher Education Press, 1998(in Chinese). [46] GUSTAFSSON B. The convergence rate for difference approximations to mixed initial boundary value problems[J]. Mathematics of Computation, 1975, 29(130):396-406. [47] LI W N, REN Y X, LEI G D, et al. The multi-dimensional limiters for solving hyperbolic conservation laws on unstructured grids[J]. Journal of Computational Physics, 2011, 230(21):7775-7795. [48] LI W N, REN Y X. The multi-dimensional limiters for solving hyperbolic conservation laws on unstructured grids II:Extension to high order finite volume schemes[J]. Journal of Computational Physics, 2012, 231(11):4053-4077. [49] LI W N, REN Y X. The multi-dimensional limiters for discontinuous Galerkin method on unstructured grids[J]. Computers & Fluids, 2014, 96:368-376. [50] LI W N, WANG Q, REN Y X. A p-weighted limiter for the discontinuous Galerkin method on one-dimensional and two-dimensional triangular grids[J]. Journal of Computational Physics, 2020, 407:109246. [51] RUIZ-GIRONÉS E, SARRATE J, ROCA X. Generation of curved high-order meshes with optimal quality and geometric accuracy[J]. Procedia Engineering, 2016, 163:315-327. [52] FERRACINA L, SPIJKER M N. Strong stability of singly-diagonally-implicit Runge-Kutta methods[J]. Applied Numerical Mathematics, 2008, 58(11):1675-1686. [53] PAN J H, WANG Q, ZHANG Y S, et al. High-order compact finite volume methods on unstructured grids with adaptive mesh refinement for solving inviscid and viscous flows[J]. Chinese Journal of Aeronautics, 2018, 31(9):1829-1841. [54] HUANG Q M, REN Y X, WANG Q. High order finite volume schemes for solving the non-conservative convection equations on the unstructured grids[J]. Journal of Scientific Computing, 2021, 88(2):1-34. [55] CHENG J, ZHANG F, LIU T G. A high order compact least-squares reconstructed discontinuous Galerkin method for the steady-state compressible flows on hybrid grids[J]. Journal of Computational Physics, 2018, 362:95-113. [56] LOU J L, LI L Q, LUO H, et al. Reconstructed discontinuous Galerkin methods for linear advection-diffusion equations based on first-order hyperbolic system[J]. Journal of Computational Physics, 2018, 369:103-124. [57] TAMAKI Y, IMAMURA T. A novel efficient reconstruction scheme for unstructured grids based on iterative least-squares methods[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016:1100. [58] NISHIKAWA H. From hyperbolic diffusion scheme to gradient method:Implicit Green-Gauss gradients for unstructured grids[J]. Journal of Computational Physics, 2018, 372:126-160. [59] BURGESS N K, MAVRIPLIS D J. High-order discontinuous Galerkin methods for turbulent high-lift flows[C]//International Conference on Computational Fluid Dynamics,2012:ICCFD7-4202. |