[1] DENG X G, MAEKAWA H. Compact high-order accurate nonlinear schemes[J]. Journal of Computational Physics, 1997, 130(1): 77-91. [2] DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 22-44. [3] DENG X G, LIU X, MAO M L, et al. Investigation on weighted compact fifth-order nonlinear scheme and applications to complex flow[C]//17th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2005. [4] SUN Z Y, INABA S, XIAO F. Boundary Variation Diminishing (BVD) reconstruction: A new approach to improve Godunov schemes[J]. Journal of Computational Physics, 2016, 322: 309-325. [5] LELE S K. Compact finite difference schemes with spectral-like resolution[J]. Journal of Computational Physics, 1992, 103(1): 16-42. [6] ZHENG S C, DENG X G, WANG D F, et al. A parameter-free ε-adaptive algorithm for improving weighted compact nonlinear schemes[J]. International Journal for Numerical Methods in Fluids, 2019, 90(5): 247-266. [7] DENG X, INABA S, XIE B, et al. High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces[J]. Journal of Computational Physics, 2018, 371: 945-966. [8] DENG X, XIE B, XIAO F, et al. New accurate and efficient method for stiff detonation capturing[J]. AIAA Journal, 2018, 56(10): 4024-4038. [9] DENG X, SHIMIZU Y, XIAO F. A fifth-order shock capturing scheme with two-stage boundary variation diminishing algorithm[J]. Journal of Computational Physics, 2019, 386: 323-349. [10] DENG X, JIANG Z H, XIAO F, et al. Implicit large eddy simulation of compressible turbulence flow with PnTm-BVD scheme[J]. Applied Mathematical Modelling, 2020, 77: 17-31. [11] 肖锋. 基于BVD原理的高保真空间重构方法[J]. 空气动力学学报, 2021, 39(1): 125-137. XIAO F. High-fidelity numerical methods based on Boundary Variation Diminishing principle[J]. Acta Aerodynamica Sinica, 2021, 39(1): 125-137 (in Chinese). [12] HENRICK A K, ASLAM T D, POWERS J M. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points[J]. Journal of Computational Physics, 2005, 207(2): 542-567. [13] BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6): 3191-3211. [14] FARDIPOUR K, MANSOUR K. Development of targeted compact nonlinear scheme with increasingly high order of accuracy[J]. Progress in Computational Fluid Dynamics, 2020, 20(1): 1-19. [15] ZHU J, SHU C W, QIU J X. High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters on triangular meshes[J]. Applied Numerical Mathematics, 2020, 153(1): 519-539. [16] QIN J X, CHEN Y M, DENG X G. Stabilized seventh-order dissipative compact scheme for two-dimensional Euler equations[J]. Chinese Physics B, 2019, 28(10): 412-420. [17] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. [18] SOD G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics, 1978, 27(1): 1-31. [19] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1988, 77(1): 439-471. [20] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes, II[J]. Journal of Computational Physics, 1989, 83(1): 32-78. [21] TITAREV V A, TORO E F. Finite-volume WENO schemes for three-dimensional conservation laws[J]. Journal of Computational Physics, 2004, 201(1): 238-260. [22] WOODWARD P, COLELLA P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics, 1984, 54(1): 115-173. [23] PIROZZOLI S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction[J]. Journal of Computational Physics, 2002, 178(1): 81-117. [24] SAMTANEY R, PULLIN D I, KOSOVIC' B. Direct numerical simulation of decaying compressible turbulence and shocklet statistics[J]. Physics of Fluids, 2001, 13(5): 1415-1430. |