1 |
阎超. 航空CFD四十年的成就与困境[J]. 航空学报, 2022, 43(10): 526490.
|
|
YAN C. Achievements and predicaments of CFD in aeronautics in past forty years[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 526490 (in Chinese).
|
2 |
张子佩, 赵钟, 陈坚强, 等. 风雷软件LES开发设计与验证[J]. 航空学报, 2023, 44(6): 127171.
|
|
ZHANG Z P, ZHAO Z, CHEN J Q, et al. Development and verification of LES model in NNW-PHengLEI[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(6): 127171 (in Chinese).
|
3 |
KROLL N, ABU-ZURAYK M, DIMITROV D, et al. DLR Project Digital-X: Towards virtual aircraft design and flight testing based on high-fidelity methods[J]. CEAS Aeronautical Journal, 2016, 7(1): 3-27.
|
4 |
刘朋欣, 袁先旭, 孙东, 等. 高温化学非平衡湍流边界层直接数值模拟[J]. 航空学报, 2022, 43(1): 124877.
|
|
LIU P X, YUAN X X, SUN D, et al. Direct numerical simulation of high-temperature turbulent boundary layer with chemical nonequilibrium[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124877 (in Chinese).
|
5 |
张来平, 邓小刚, 何磊, 等. E级计算给CFD带来的机遇与挑战[J]. 空气动力学学报, 2016, 34(4): 405-417.
|
|
ZHANG L P, DENG X G, HE L, et al. The opportunity and grand challenges in computational fluid dynamics by exascale computing[J]. Acta Aerodynamica Sinica, 2016, 34(4): 405-417 (in Chinese).
|
6 |
刘胜, 卢凯, 郭阳, 等. 一种自主设计的面向E级高性能计算的异构融合加速器[J]. 计算机研究与发展, 2021, 58(6): 1234-1237.
|
|
LIU S, LU K, GUO Y, et al. A self-designed heterogeneous accelerator for exascale high performance computing[J]. Journal of Computer Research and Development, 2021, 58(6): 1234-1237 (in Chinese).
|
7 |
龚春叶, 刘杰, 包为民, 等. 后摩尔时代国产高性能并行应用软件生态建设综述[J]. 系统仿真学报, 2022, 34(10): 2107-2118.
|
|
GONG C Y, LIU J, BAO W M, et al. Review on ecological construction of domestic high-performance parallel application software in post Moore era[J]. Journal of System Simulation, 2022, 34(10): 2107-2118 (in Chinese).
|
8 |
CARY A, CHAWNER J, DUQUE E, et al. Realizing the vision of CFD in 2030[J]. Computing in Science & Engineering, 2022, 24(1): 64-70.
|
9 |
ECONOMON T D, MUDIGERE D, BANSAL G, et al. Performance optimizations for scalable implicit RANS calculations with SU2[J]. Computers & Fluids, 2016, 129: 146-158.
|
10 |
GARCIA-GASULLA M, HOUZEAUX G, FERRER R, et al. MPI+X: Task-based parallelisation and dynamic load balance of finite element assembly[J]. International Journal of Computational Fluid Dynamics, 2019, 33(3): 115-136.
|
11 |
ATKINSON PATRICK R. Enabling task parallelism for many-core architectures[D]. Bristol: University of Bristol, 2021
|
12 |
陈坚强, 吴晓军, 张健, 等. FlowStar: 国家数值风洞(NNW)工程非结构通用CFD软件[J]. 航空学报, 2021, 42(9): 625739.
|
|
CHEN J Q, WU X J, ZHANG J, et al. FlowStar: General unstructured-grid CFD software for national numerical windtunnel(NNW) project[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625739 (in Chinese).
|
13 |
王年华, 常兴华, 赵钟, 等. 非结构CFD软件MPI+OpenMP混合并行及超大规模非定常并行计算的应用[J]. 航空学报, 2020, 41(10): 123859.
|
|
WANG N H, CHANG X H, ZHAO Z, et al. Implementation of hybrid MPI+OpenMP parallelization on unstructured CFD solver and its applications in massive unsteady simulations[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123859 (in Chinese).
|
14 |
张曦, 孙旭, 郭晓虎, 等. 面向GPU的非结构网格有限体积计算流体力学的图染色方法优化[J]. 国防科技大学学报, 2022, 44(5): 24-34.
|
|
ZHANG X, SUN X, GUO X H, et al. Optimizations of graph coloring method for unstructured finite volume computational fluid dynamics on GPU[J]. Journal of National University of Defense Technology, 2022, 44(5): 24-34 (in Chinese).
|
15 |
GOMES P, ECONOMON T D, PALACIOS R. Sustainable high-performance optimizations in SU2[C]∥ Proceedings of the AIAA Scitech 2021 Forum. Reston: AIAA, 2021.
|
16 |
FARHAN M A AL, KEYES D E. Optimizations of unstructured aerodynamics computations for many-core architectures[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 29(10): 2317-2332.
|
17 |
FOURNIER Y, BONELLE J, VEZOLLE P, et al. Multiple threads and parallel challenges for large simulations to accelerate a general Navier⁃Stokes CFD code on massively parallel systems[J]. Concurrency and Computation: Practice and Experience, 2013, 25(6): 843-861.
|
18 |
THÉBAULT L, PETIT E, DINH Q. Scalable and efficient implementation of 3d unstructured meshes computation: A case study on matrix assembly[C]∥ Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. New York: ACM, 2015: 120-129.
|
19 |
STONE C P, WALDEN A, ZUBAIR M, et al. Accelerating unstructured-grid CFD algorithms on NVIDIA and AMD GPUs[C]∥ 2021 IEEE/ACM 11th Workshop on Irregular Applications: Architectures and Algorithms (IA3). New York: IEEE Press, 2021: 19-26.
|
20 |
BALOGH G D, REGULY I Z, MUDALIGE G R. Comparison of parallelisation approaches, languages, and compilers for unstructured mesh algorithms on GPUs[C]∥ International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems. Berlin: Springer, 2018: 22-43.
|
21 |
KARYPIS G, KUMAR V. A fast and high quality multilevel scheme for partitioning irregular graphs[J]. SIAM Journal on Scientific Computing, 1998, 20(1): 359-392.
|
22 |
CUTHILL E, MCKEE J. Reducing the bandwidth of sparse symmetric matrices[C]∥ Proceedings of the 1969 24th national conference. New York: ACM, 1969: 157-172.
|
23 |
FOURNIER Y, BONELLE J, MOULINEC C, et al. Optimizing Code_Saturne computations on petascale systems[J]. Computers & Fluids, 2011, 45(1): 103-108.
|
24 |
OLIKER L, LI X Y, HUSBANDS P, et al. Effects of ordering strategies and programming paradigms on sparse matrix computations [J]. SIAM Review, 2002, 44(3): 373-393.
|
25 |
LÖHNER R. Cache-efficient renumbering for vectorization[J]. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26(5): 628-636.
|
26 |
SULYOK A A, BALOGH G D, REGULY I Z, et al. Locality optimized unstructured mesh algorithms on GPUs[J]. Journal of Parallel and Distributed Computing, 2019, 134(C): 50-64.
|
27 |
余永刚, 周铸, 黄江涛, 等. 单通道客机气动标模CHN-T1设计[J]. 空气动力学学报, 2018, 36(3): 505-513.
|
|
YU Y G, ZHOU Z, HUANG J T, et al. Aerodynamic design of a standard model CHN-T1 for single-aisle passenger aircraft[J]. Acta Aerodynamica Sinica, 2018, 36(3): 505-513 (in Chinese).
|