[1] 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3):020891. ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field:Applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):020891(in Chinese). [2] 张枫. 基于FLUENT软件包的制导炮弹气动力参数计算技术研究[D]. 南京:南京理工大学, 2010. ZHANG F. Research on calculation technology of aerodynamic parameters of guided projectile based on FLUENT software package[D]. Nanjing:Nanjing University of Science and Technology, 2010. [3] 梁海顺, 杨昆, 王贯超, 等. 基于NUMECA技术的喷气织机主喷嘴内部流场数值模拟[J]. 纺织器材, 2008, 35(3):12-16. LIANG H S, YANG K, WANG G C, et al. NUMECA-based numerical value analog of flow field inside of the main nozzles of air-jet looms[J]. Textile Accessories, 2008, 35(3):12-16(in Chinese). [4] 季路成, 钟文涛, 徐建中. 复杂物理域流场数值模拟软件-CASFLOW的开发[J]. 工程热物理学报, 2000, 21(6):700-702. JI L C, ZHONG W T, XU J Z. Development of CASFLOW for flow simulations with complex physical zone[J]. Journal of Engineering Thermophysics, 2000, 21(6):700-702(in Chinese). [5] 李广宁, 李凤蔚, 周志宏. 运输类飞机气动力分析软件ATTF的开发与验证[J]. 西北工业大学学报, 2011, 29(1):148-152. LI G N, LI F W, ZHOU Z H. Validation of a new developed aerodynamics analysis toolkit for civil aircraft configurations[J]. Journal of Northwestern Polytechnical University, 2011, 29(1):148-152(in Chinese). [6] 李斌. 战术导弹CFD软件求解器开发与应用[J]. 战术导弹技术, 2009(2):32-35, 92. LI B. Development and application of CFD solver for tactical missile[J]. Tactical Missile Technology, 2009(2):32-35, 92(in Chinese). [7] 李新亮, 傅德薰, 马延文, 等. 高精度计算流体力学软件Hoam-OpenCFD开发[J]. 科研信息化技术与应用, 2010, 1(1):53-59. LI X L, FU D X, MA Y W, et al. Development of high accuracy CFD software Hoam-OpenCFD[J]. E-Science technology & Application, 2010, 1(1):53-59(in Chinese). [8] 赵钟, 何磊, 何先耀. 风雷(PHengLEI)通用CFD软件设计[J]. 计算机工程与科学, 2020, 42(2):210-219. ZHAO Z, HE L, HE X Y. Design of general CFD software PHengLEI[J]. Computer Engineering & Science, 2020, 42(2):210-219(in Chinese). [9] 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J/OL]. 中国科学:技术科学, (2021-04-28)[2021-05-01]. https://kns.cnki.net/kcms/detail/11.5844.TH.202104-28.0914.006.html CHEN J Q. Advances in the key technologies of Chinese national numerical wind tunnel project[J/OL]. Scientia Sinica (Technologica), (2021-04-28)[2021-05-01]. https://kns.cnki.net/kcms/detail/11.5844.TH.20210428.09-14.006.html (in Chinese). [10] CHEN J T, ZHANG Y B, ZHOU N C, et al. Numerical investigations of the high-lift configuration with MFlow solver[J]. Journal of Aircraft, 2015, 52(4):1051-1062. [11] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372. [12] VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady state solutions[C]//31st Aerospace Sciences Meeting. Reston:AIAA, 1993:880. [13] 马明生, 龚小权, 邓有奇, 等. 一种适用于非结构网格的间断Galerkin有限元LU-SGS隐式方法[J]. 西北工业大学学报, 2016, 34(5):754-760. MA M S, GONG X Q, DENG Y Q, et al. An implicit LU-SGS scheme for the discontinuous Galerkin method on unstructured grids[J]. Journal of Northwestern Polytechnical University, 2016, 34(5):754-760(in Chinese). [14] OTERO E, ELIASSON P. Acceleration on stretched meshes with line-implicit LU-SGS in parallel implementation[J]. International Journal of Computational Fluid Dynamics, 2015, 29(2):133-149. [15] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]//30th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1992. [16] MENTER F, RUMSEY C. Assessment of two-equation turbulence models for transonic flows[C]//Fluid Dynamics Conference. Reston:AIAA, 1994. [17] MANI M, BABCOCK D, WINKLER C, et al. Predictions of a supersonic turbulent flow in a square duct[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2013. [18] DACLES-MARIANI J, KWAK D, ZILLIAC G. On numerical errors and turbulence modeling in tip vortex flow prediction[J]. International Journal for Numerical Methods in Fluids, 1999, 30(1):65-82. [19] MENTER F. Improved two-equation k-ω turbulence models for aerodynamic flows:NASA STI 93[R]. Moffett:NASA STI, 1992. [20] 马明生, 邓有奇, 郑鸣, 等. 超声速侧向多喷流干扰特性数值模拟[J]. 空气动力学学报, 2007, 25(4):468-473. MA M S, DENG Y Q, ZHENG M, et al. Numerical investigation of supersonic jet interactions for tactical bodies[J]. Acta Aerodynamica Sinica, 2007, 25(4):468-473(in Chinese). [21] 张耀冰. 运输机气动特性混合网格数值模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2010. ZHANG Y B. Numerical simulation of aerodynamic characteristics of transport aircraft with hybrid grid[D]. Mianyang:China Aerodynamics Research and Development Center, 2010(in Chinese). [22] 张培红, 张耀冰, 周桂宇, 等. 面向混合网格高精度阻力预测的熵修正方法[J]. 航空学报, 2018, 39(9):122030. ZHANG P H, ZHANG Y B, ZHOU G Y, et al. Entropy correction method for high accuracy drag prediction with mixed grids[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):122030(in Chinese). [23] 唐静, 崔鹏程, 贾洪印, 等. 非结构混合网格鲁棒自适应技术[J]. 航空学报, 2019, 40(10):122894. TANG J, CUI P C, JIA H Y, et al. Robust adaptation techniques for unstructured hybrid mesh[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):122894(in Chinese). [24] 唐静, 郑鸣, 邓有奇, 等. 网格自适应技术在复杂外形流场模拟中的应用[J]. 计算力学学报, 2015, 32(6):752-757. TANG J, ZHENG M, DENG Y Q, et al. Grid adaptation for flow simulation of complicated configuration[J]. Chinese Journal of Computational Mechanics, 2015, 32(6):752-757(in Chinese). [25] 崔鹏程, 邓有奇, 唐静, 等. 基于伴随方程的网格自适应及误差修正[J]. 航空学报, 2016, 37(10):2992-3002. CUI P C, DENG Y Q, TANG J, et al. Adjoint equations-based grid adaptation and error correction[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):2992-3002(in Chinese). [26] 唐静, 张健, 李彬, 等. 非结构混合网格自适应并行技术[J]. 航空学报, 2020, 41(1):123202. TANG J, ZHANG J, LI B, et al. Parallel algorithms for unstructured hybrid mesh adaptation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):123202(in Chinese). [27] 张培红, 张耀冰, 周桂宇, 等. 面向非结构混合网格高精度阻力预测的梯度求解方法[J]. 航空学报, 2018, 39(1):121415. ZHANG P H, ZHANG Y B, ZHOU G Y, et al. Gradient calculation method of unstructured mixed grids for improving drag prediction accuracy[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121415(in Chinese). [28] 张培红, 王明, 邓有奇, 等. 武器分离及舱门开启过程数值模拟研究[J]. 空气动力学学报, 2013, 31(3):277-281, 293. ZHANG P H, WANG M, DENG Y Q, et al. Numerical simulation of store separation and door operation[J]. Acta Aerodynamica Sinica, 2013, 31(3):277-281, 293(in Chinese). [29] LI B, TANG J, ZHOU N C. Numerical simulation of missile launching with rudder deflection[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2013, 30(2):107-115. [30] CUI P C, LI B, TANG J, et al. Investigation of store separation characteristics by leading edge spoilers before supersonic cavity[J]. Journal of Physics:Conference Series, 2020, 1600:012017. [31] 崔鹏程, 唐静, 李彬, 等. 基于超网格的重叠网格守恒插值方法[J]. 航空学报, 2018, 39(3):121569. CUI P C, TANG J, LI B, et al. A conservative interpolation method for overset mesh via super mesh[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):121569(in Chinese). [32] BONET J, PERAIRE J. An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems[J]. International Journal for Numerical Methods in Engineering, 1991, 31(1):1-17. [33] KARYPIS G, KUMAR V. A fast and high quality multilevel scheme for partitioning irregular graphs[J]. SIAM Journal of Scientific Computing, 1998, 20(1):359-392. [34] 唐静, 李彬, 周乃春, 等. 基于非结构网格流场超大规模并行计算[J]. 空气动力学学报, 2019, 37(1):61-67. TANG J, LI B, ZHOU N C, et al. Large scale parallel computing for fluid dynamics on unstructured grid[J]. Acta Aerodynamica Sinica, 2019, 37(1):61-67(in Chinese). [35] HIROSE N, ASAI K, IKAWA K. Transonic 3-D Euler analysis of flows around fan-jet engine and T. P. S. (Turbine Powered Simulator):1045[R].[S. l.]:National Aerospace Laboratory, 1989. [36] GUO J H, LIN G P, BU X Q, et al. Sensitivity analysis of flowfield modeling parameters upon the flow structure and aerodynamics of an opposing jet over a hypersonic blunt body[J]. Chinese Journal of Aeronautics, 2020, 33(1):161-175. [37] 龚小权, 马明生, 张健, 等. 基于非结构重叠网格的螺旋桨滑流非定常数值模拟[J]. 航空动力学报, 2018, 33(2):345-354. GONG X Q, MA M S, ZHANG J, et al. Unsteady numerical simulation of propeller slipstream based on unstructured chimera grid[J]. Journal of Aerospace Power, 2018, 33(2):345-354(in Chinese). [38] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from The Fifth Computational Fluid Dynamics Drag Prediction Workshop[J]. Journal of Aircraft, 2014, 51(4):1194-1213. [39] RUMSEY C L, SLOTNICK J P. Overview and summary of The Second AIAA High-Lift Prediction Workshop[J]. Journal of Aircraft, 2014, 52(4):1006-1025. [40] 张耀冰, 邓有奇, 吴晓军, 等. DLR-F6翼身组合体数值计算[J]. 空气动力学学报, 2011, 29(2):163-169. ZHANG Y B, DENG Y Q, WU X J, et al. Drag prediction of DLR-F6 using MFlow unstructured mesh solver[J]. Acta Aerodynamica Sinica, 2011, 29(2):163-169(in Chinese). [41] HEIM E R. CFD Wing/Pylon/Finned Store mutual interference wind tunnel experiment:ADB152669[R]. Tullahoma:Arnold Engineering Development Center, 1991. [42] VASSBERG J,TINOCO E,MANI M R,et al.Summary of the third AIAA CFD drag prediction workshop[C]//45th AIAA Aerospace Sciences Meeting and Exhibit.Reston:AIAA,2007. [43] Holst T L.Computational fluid dynamics drag prediction-Results from the Viscous Transonic Airfoil Workshop:NASA TM100095[R].Washington,D.C.:NASA,1998. [44] HEIM E R. CFD wing/pylon/finned store mutual interference wind tunnel experiment[EB/OL]. (1991-01-01)[2021-05-01]. https://www.zhangqiaokeyan.com/ntis-science-report_other_thesis/020711225375.html. |