[1] 郝佳傲. 高超声速热化学非平衡耦合效应的建模研究[D]. 北京:北京航空航天大学, 2018. HAO J A. Modeling of thermochemical nonequilibrium coupling effects in hypersonic flows[D]. Beijing:Beihang University, 2018(in Chinese). [2] 王京盈. 高速高温流动的化学非平衡及热辐射耦合效应研究[D]. 北京:北京航空航天大学, 2015. WANG J Y. Numerical study on coupled effects of the chemical nonequilibrium and thermal radiation in high speed and high temperature flows[D]. Beijing:Beihang University, 2015(in Chinese). [3] GNOFFO P. Application of program LAURA to three-dimensional AOTV flowfields[C]//24th Aerospace Sciences Meeting. Reston:AIAA, 1986. [4] NEEL R, GODFREY A, SLACK D. Turbulence model validation in GASP version 4[C]//33rd AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2003. [5] 李海燕. 高超声速高温气体流场的数值模拟[D]. 绵阳:中国空气动力研究与发展中心, 2007:11-12. LI H Y. Numerical simulation of hypersonic and high temperature gas flowfields[D]. Mianyang:China Aerodynamics Research and Development Center, 2007:11-12(in Chinese). [6] LITTON D, EDWARDS J, WHITE J. Algorithmic enhancements to the VULCAN navier-stokes solver[C]//16th AIAA Computational Fluid Dynamics Conference. Reston:AIAA, 2003. [7] NELSON C. An overview of the NPARC alliance's wind-US flow solver[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2010. [8] SCHERRER D, VUILLOT F. MSD/MSDH code applications[C]//1st ONERA-DLR Aerospace Symposium, 1999. [9] GAO Z X, LEE C. Numerical research on mixing characteristics of different injection schemes for supersonic transverse jet[J]. Science China Technological Sciences, 2011, 54(4):883-893. [10] GAO Z X, JIANG C W, LEE C. Improvement and application of wall function boundary condition for high-speed compressible flows[J]. Science China Technological Sciences, 2013, 56(10):2501-2515. [11] 董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析[D]. 北京:北京航空航天大学, 1996. DONG W Z. Numerical simulation and analysis of thermochemical nonequilibrium effects at hypersonic flow[D]. Beijing:Beihang University, 1996(in Chinese). [12] 丁明松. 高超声速非平衡流动的磁流体力学控制数值模拟[D]. 北京:军事科学院, 2019. DING M M. Numerical simulation of magnetohydro-dynamic control for hypersonic nonequilibrium flow[D]. Beijing:Academy of Military Sciences, 2019(in Chinese). [13] HE X, ZHAO Z, ZHANG L P. The research and development of structured-unstructured hybrid CFD software[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2013, 30(sup):116-126. [14] 赫新, 赵钟, 张来平. 结构非结构耦合计算CFD软件HyperFlow初步验证[C]//第15届全国计算流体力学会议论文集, 2012:1282-1287. HE X, ZHAO Z, ZHANG L P. The research and develop-ment of structured-unstructured hybrid CFD software HyperFLOW[C]//The Proceedings of the 15th Chinese CFD Conference, 2012:1282-1287(in Chinese). [15] 陈坚强. 国家数值风洞工程(NNW)关键技术研究进展[J/OL]. (2021-04-28)[2021-05-05]. 中国科学:技术科学, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese National Numerical Wind Tunnel Project[J/OL]. (2021-04-28)[2021-05-05]. Scientia Sinica Technologica, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html (in Chinese). [16] 赵钟, 何磊, 何先耀. 风雷(PHengLEI)通用CFD软件设计[J]. 计算机工程与科学, 2020, 42(2):210-219. ZHAO Z, HE L, HE X Y. Design of general CFD software PHengLEI[J]. Computer Engineering & Science, 2020, 42(2):210-219(in Chinese). [17] 赵钟, 张来平, 何磊, 等. 适用于任意网格的大规模并行CFD计算框架PHengLEI[J]. 计算机学报, 2019, 42(11):2368-2383. ZHAO Z, ZHANG L P, HE L, et al. PHengLEI:a large scale parallel CFD framework for arbitrary grids[J]. Chinese Journal of Computers, 2019, 42(11):2368-2383(in Chinese). [18] 赵慧勇. 超燃冲压整体发动机并行数值研究[D]. 绵阳:中国空气动力研究与发展中心, 2005. ZHAO H Y. Parallel numerical study of whole scramjet engine[D]. Mianyang:China Aerodynamics Research and Development Center, 2005(in Chinese). [19] KEE R J, RUPLEY F M, MEEKS E, et al. CHEMKIN-III:A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics[R]. Office of Scientific and Technical Information (OSTI), 1996. [20] GUPTA R N, YOS J M, THOMPSON R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000K:NASA Reference Publication 1232[R]. Washington, D.C.:NASA, 1990. [21] DUNN M G, KANG S W. Theoretical and Experimental Studies of Reentry Plasmas:NASA-CR-2232[R]. Washington, D.C.:NASA, 1973. [22] SURZHIKOV S, SHANG J. Kinetic models analysis for super-orbital aerophysics[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2008. [23] VOS J B, LEYLAND P, VAN KEMENADE V, et, al. NSMB Handbook 5.0[M]. NSMB Handbook, 2003. [24] HANNEMANN K. High enthalpy flows in the HEG shock tunnel:experiment and numerical rebuilding (invited)[C]//41st Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2003. [25] SCHRAMM J M, HANNEMANN K, BECK W, et al. Cylinder shock layer density profiles measured in high enthalpy flows in HEG[C]//22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston:AIAA, 2002. [26] GRANTBAM W L. Flight results of a 25000-foot-per-second reentry experiment using microwave reflectomters to measure plasma electron density and standoff distance:NASA TND-6062[R]. Washington, D.C.:NASA, 1970. [27] JONES W L, CROSS A E. Electrostatic-probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second:NASA TND-6617[R]. Washington, D.C.:NASA, 1972. [28] MUYLAERT J, WALPOT L, HAEUSER J, et al. Standard model testing in the European High Enthalpy Facility F4 andextrapolation to flight[C]//28th Joint Propulsion Conference and Exhibit. Reston:AIAA, 1992. [29] SCOTT C D. Effects of nonequilibrium and wall catalysis on Shuttle heat transfer[J]. Journal of Spacecraft and Rockets, 1985, 22(5):489-499. |