[1] MOIN P, SQUIRES K, CABOT W, et al. A dynamic subgrid-scale model for compressible turbulence and scalar transport[J]. Physics of Fluids A:Fluid Dynamics, 1991, 3(11):2746-2757. [2] MENEVEAU C, KATZ J. Scale-invariance and turbulence models for large-eddy simulation[J]. Annual Review of Fluid Mechanics, 2000, 32(1):1-32. [3] CHEN S Y, XIA Z H, PEI S Y, et al. Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows[J]. Journal of Fluid Mechanics, 2012, 703:1-28. [4] 张兆顺, 崔桂香, 许春晓. 湍流大涡数值模拟的理论和应用[M]. 北京:清华大学出版社, 2008. ZHANG Z S, CUI G X, XU C X. Theory and applica tion of large eddy simulation of turbulent flow[M]. Beijing:Tsinghua University Press, 2008(in Chinese). [5] 傅德薰, 马延文, 李新亮. 可压缩湍流直接数值模拟[M]. 北京:科学出版社, 2010. FU D X, MA Y W, LI X L. Direct numerical simulation of compressible turbulence[M]. Beijing:Science Press, 2010(in Chinese). [6] GARNIER E, ADAMS N, SAGAUT P. Large eddy simulation for compressible flows[M]. Dordrecht:Springer Netherlands, 2009. [7] POPE S. Turbulent flows[M]. Cambridge:Cambridge University Press, 2000. [8] SMAGORINSKY J. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 1963, 91(3):99-164. [9] LILLY D K. The representation of small-scale turbulence in numerical simulation experiments[C]//Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, 1967:195-210. [10] DEARDORFF J W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers[J]. Journal of Fluid Mechanics, 1970, 41(2):453-480. [11] WANG J C, SHI Y P, WANG L P, et al. Effect of shocklets on the velocity gradients in highly compressible isotropic turbulence[J]. Physics of Fluids, 2011, 23(12):125103. [12] WANG J C, SHI Y P, WANG L P, et al. Effect of com pressibility on the small-scale structures in isotropic turbulence[J]. Journal of Fluid Mechanics, 2012, 713:588-631. [13] WANG J C, GOTOH T, WATANABE T. Spectra andstatistics in compressible isotropic turbulence[J]. Physi cal Review Fluids, 2017, 2:013403. [14] WANG J C, GOTOH T, WATANABE T. Shocklet statistics in compressible isotropic turbulence[J]. Physical Review Fluids, 2017, 2(2):023401. [15] WANG J C, GOTOH T, WATANABE T. Scaling and intermittency in compressible isotropic turbulence[J]. Physical Review Fluids, 2017, 2(5):053401. [16] WANG J C, WAN M P, CHEN S, et al. Kinetic energy transfer in compressible isotropic turbulence[J]. Journal of Fluid Mechanics, 2018, 841:581-613. [17] WANG J C, WAN M P, CHEN S, et al. Cascades of temperature and entropy fluctuations in compressible turbulence[J]. Journal of Fluid Mechanics, 2019, 867:195-215. [18] 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J/OL]. 中国科学:技术科学,(2021-04-28)[2021-05-10]. https://kns.cnki.net/kcms/detail/11.5844.TH.20210-428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese national numerical windtunnel project.Scientia Sinica Technologica, (2021-04-28)[2021-05-10]. https://kns.cnki.net/kcms/detail/11.5844.TH.20210428.0914.006.html (in Chinese). [19] HUGHES T J R, MAZZEI L, JANSEN K E. Large Eddy Simulation and the variational multiscale method[J]. Computing and Visualization in Science, 2000, 3(1-2):47-59. [20] EYINK G L. Locality of turbulent cascades[J]. Physica D:Nonlinear Phenomena, 2005, 207(1-2):91-116. [21] LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807:155-166. [22] XIAO H, WU J L, WANG J X, et al. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier-Stokes simulations:A data-driven, physics-informed Bayesian approach[J]. Journal of Computational Physics, 2016, 324:115-136. [23] DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual Review of Fluid Mechanics, 2019, 51(1):357-377. [24] SARGHINI F, DE FELICE G, SANTINI S. Neural networks based subgrid scale modeling in large eddy simulations[J]. Computers & Fluids, 2003, 32(1):97-108. [25] GAMAHARA M, HATTORI Y. Searching for turbulence models by artificial neural network[J]. Physical Review Fluids, 2017, 2(5):054604. [26] VOLLANT A, BALARAC G, CORRE C. Subgrid-scale scalar flux modelling based on optimal estimation theory and machine-learning procedures[J]. Journal of Turbulence, 2017, 18(9):854-878. [27] KUTZ J N. Deep learning in fluid dynamics[J]. Journal of Fluid Mechanics, 2017, 814:1-4. [28] MAULIK R, SAN O. A neural network approach for the blind deconvolution of turbulent flows[J]. Journal of Fluid Mechanics, 2017, 831:151-181. [29] JOFRE L, DOMINO S P, IACCARINO G. A framework for characterizing structural uncertainty in large-eddy simulation closures[J]. Flow, Turbulence and Combustion, 2018, 100(2):341-363. [30] ZHOU Z D, WANG S Z, JIN G D. A structural subgrid-scale model for relative dispersion in large-eddy simulation of isotropic turbulent flows by coupling kinematic simulation with approximate deconvolution method[J]. Physics of Fluids, 2018, 30(10):105110. [31] WANG Z, LUO K, LI D, et al. Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation[J]. Physics of Fluids, 2018, 30(12):125101. [32] MAULIK R, SAN O, RASHEED A, et al. Data-driven deconvolution for large eddy simulations of Kraichnan turbulence[J]. Physics of Fluids, 2018, 30(12):125109. [33] ZHOU Z D, HE G W, WANG S Z, et al. Subgrid-scale model for large-eddy simulation of isotropic turbulent flows using an artificial neural network[J]. Computers & Fluids, 2019, 195:104319. [34] ZHU L Y, ZHANG W W, KOU J Q, et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils[J]. Physics of Fluids, 2019, 31(1):015105. [35] MAULIK R, SAN O, RASHEED A, et al. Subgrid modelling for two-dimensional turbulence using neural networks[J]. Journal of Fluid Mechanics, 2019, 858:122-144. [36] YU M, HUANG W X, XU C X, Data-driven construction of a reduced-order model for supersonic boundary layer transition[J]. Journal of Fluid Mechanics, 2019, 874:1096-1114. [37] MA C, WANG J C, E W N. Model reduction with memory and the machine learning of dynamical systems[J]. Communications in Computational Physics, 2019, 25(4):947-962. [38] XIE C Y, WANG J C, LI K, et al. Artificial neural network approach to large-eddy simulation of compressible isotropic turbulence[J]. Physical Review E, 2019, 99(5-1):053113. [39] XIE C Y, LI K, MA C, et al. Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network[J]. Physical Review Fluids, 2019, 4(10):104605. [40] XIE C Y, WANG J C, LI H, et al. Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence[J]. Physics of Fluids, 2019, 31(8):085112. [41] XIE C Y, WANG J C, LI H, et al. Spatial artificial neural network model for subgrid-scale stress and heat flux of compressible turbulence[J]. Theoretical and Applied Mechanics Letters, 2020, 10(1):27-32. [42] XIE C Y, WANG J C, LI H, et al. Spatially multi-scale artificial neural network model for large eddy simulation of compressible isotropic turbulence[J]. AIP Advances, 2020, 10(1):015044. [43] XIE C Y, WANG J C, E W N. Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence[J]. Physical Review Fluids, 2020, 5:054606. [44] XIE C Y, YUAN Z L, WANG J C. Artificial neural network-based nonlinear algebraic models for large eddy simulation of turbulence[J]. Physics of Fluids, 2020, 32(11):115101. [45] YUAN Z L, XIE C Y, WANG J C. Deconvolutional artificial neural network models for large eddy simulation of turbulence[J]. Physics of Fluids, 2020, 32(11):115106. [46] 谢晨月, 袁泽龙, 王建春, 等. 基于人工神经网络的湍流大涡模拟方法[J]. 力学学报, 2021, 53(1):1-16. XIE C Y, YUAN Z L, WANG J C, et al. Artificial neural network-based subgrid-scale models for large-eddy simulation of turbulence[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1):1-16(in Chinese). [47] XIE C Y, XIONG X M, WANG J C. Artificial neural network approach for turbulence models:A local framework[DB/OL]. arXiv preprint:2101.10528, 2021. [48] 任峰, 高传强, 唐辉. 机器学习在流动控制领域的应用及发展趋势[J]. 航空学报, 2021, 42(4):524686. REN F, GAO C Q, TANG H. Machine learning for flow control:Applications and development trends[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524686(in Chinese). [49] 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4):524689. ZHANG W W, KOU J Q, LIU Y L. Prospect of artifi-cial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524689(in Chinese). [50] 何创新, 邓志文, 刘应征. 湍流数据同化技术及应用[J]. 航空学报, 2021, 42(4):524704. HE C X, DENG Z W, LIU Y Z. Turbulent flow data assimilation and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524704(in Chinese). [51] 叶舒然, 张珍, 王一伟, 等. 基于卷积神经网络的深度学习流场特征识别及应用进展[J]. 航空学报, 2021, 42(4):524736. YE S R, ZHANG Z, WANG Y W, et al. Progress in deep convolutional neural network based flow field recognition and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524736(in Chinese). [52] 李霓, 布树辉, 尚柏林, 等. 飞行器智能设计愿景与关键问题[J]. 航空学报, 2021, 42(4):524752. LI N, BU S H, SHANG B L, et al. Aircraft intelligent design:Visions and key technologies[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524752(in Chinese). [53] SAMTANEY R, PULLIN D I, KOSOVIĆ B. Direct numerical simulation of decaying compressible turbulence and shocklet statistics[J]. Physics of Fluids, 2001, 13(5):1415-1430. [54] FAVRE A. Equations des gaz turbulents compressible.I. Formes generals[J]. Journal de Mcanique, 1965, 4:361-390. [55] VREMAN B, GEURTS B, KUERTEN H. Subgrid-modelling in LES of compressible flow[J]. Applied Scientific Research, 1995, 54(3):191-203. [56] MARTÍN P M, PIOMELLI U, CANDLER G V. Subgrid-scale models for compressible large-eddy simulations[J]. Theoretical and Computational Fluid Dynamics, 2000, 13(5):361-376. [57] XIE C Y, WANG J C, LI H, et al. A modified optimal LES model for highly compressible isotropic turbulence[J]. Physics of Fluids, 2018, 30(6):065108. [58] CHAI X C, MAHESH K. Dynamic-equation model for large-eddy simulation of compressible flows[J]. Journal of Fluid Mechanics, 2012, 699:385-413. [59] WANG J, WANG L P, XIAO Z, et al. A hybrid numerical simulation of isotropic compressible turbulence[J]. Journal of Computational Physics, 2010, 229(13):5257-5279. [60] LELE S K. Compact finite difference schemes with spectral-like resolution[J]. Journal of Computational Physics, 1992, 103(1):16-42. [61] BALSARA D S, SHU C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2):405-452. [62] GHOSAL S. An analysis of numerical errors in large-eddy simulations of turbulence[J]. Journal of Computational Physics, 1996, 125(1):187-206. [63] MEYERS J, GEURTS B J, BAELMANS M. Database analysis of errors in large-eddy simulation[J]. Physics of Fluids, 2003, 15(9):2740-2755. [64] CHOW F K, MOIN P. A further study of numerical errors in large-eddy simulations[J]. Journal of Computational Physics, 2003, 184(2):366-380. [65] ALUIE H, EYINK G L. Localness of energy cascade in hydrodynamic turbulence. II. Sharp spectral filter[J]. Physics of Fluids, 2009, 21(11):115108. [66] ALUIE H. Compressible turbulence:The cascade and its locality[J]. Physical Review Letters, 2011, 106(17):174502. [67] KINGMA D, BA J. Adam:A method for stochastic optimization[DB/OL]. arXiv preprint:1412.6980, 2014. [68] BARDINA J, FERZIGER J, REYNOLDS W. Improved subgrid-scale models for large-eddy simulation:AIAA-1980-1357[R]. Reston:AIAA, 1980. [69] LIU S W, MENEVEAU C, KATZ J. On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet[J]. Journal of Fluid Mechanics, 1994, 275:83-119. [70] STOLZ S, ADAMS N A. An approximate deconvolution procedure for large-eddy simulation[J]. Physics of Fluids, 1999, 11(7):1699-1701. [71] STOLZ S, ADAMS N A, KLEISER L. The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction[J]. Physics of Fluids, 2001, 13(10):2985-3001. [72] LILLY D K. A proposed modification of the Germano subgrid-scale closure method[J]. Physics of Fluids A:Fluid Dynamics, 1992, 4(3):633-635. [73] GERMANO M. Turbulence:The filtering approach[J]. Journal of Fluid Mechanics, 1992, 238:325-336. [74] SHI Y P, XIAO Z L, CHEN S Y. Constrained subgrid-scale stress model for large eddy simulation[J]. Physics of Fluids, 2008, 20(1):011701. [75] MENEVEAU C. Statistics of turbulence subgrid-scale stresses:Necessary conditions and experimental tests[J]. Physics of Fluids, 1994, 6(2):815-833. [76] STEVENS R J A M, WILCZEK M, MENEVEAU C. Large-eddy simulation study of the logarithmic law for second-and higher-order moments in turbulent wall-bounded flow[J]. Journal of Fluid Mechanics, 2014, 757:880-907. [77] BUZZICOTTI M, LINKMANN M, ALUIE H, et al. Effect of filter type on the statistics of energy transfer between resolved and subfilter scales from a-priori analysis of direct numerical simulations of isotropic turbulence[J]. Journal of Turbulence, 2018, 19(2):167-197. [78] LINKMANN M, BUZZICOTTI M, BIFERALE L. Multi-scale properties of large eddy simulations:Corre lations between resolved-scale velocity-field increments and subgrid-scale quantities[J]. Journal of Turbulence, 2018, 19(6):493-527. |