[1] HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M].Reston:AIAA, 1994:197-267. [2] BILLIG F S. Combustion processes in supersonic flow[J]. Journal of Propulsion and Power, 1988, 4(3):209-216. [3] CURRAN E T, HEISER W H, PRATT D T. Fluidphenomena in scramjet combustion systems[J]. Annual Review of Fluid Mechanics, 1996, 28(1):323-360. [4] MATSUO K, MIYAZATO Y, KIM H D. Shock train and pseudo-shock phenomena in internal gas flows[J]. Progress in Aerospace Sciences, 1999, 35(1):33-100. [5] OSWATITSCH K. Der druckrückgewinn bei geschossen mit rückstossantrieb bei hohen übershallgeschwindigkeiten (der wirkungsgrad vos stossdiffusoren)[R]. 1944. [6] SAJBEN M, KROUTIL J C. Effects of initial boundary-layer thickness on transonic diffuser flows[J]. AIAA Journal, 1981, 19(11):1386-1393. [7] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research:what next?[J]. AIAA Journal, 2001, 39(8):1517-1531. [8] TAN H J, SUN S. Preliminary study of shock train in a curved variable-section diffuser[J]. Journal of Propulsion and Power, 2008, 24(2):245-252. [9] WEISS A, GRZONA A, OLIVIER H. Behavior of shock trains in a diverging duct[J]. Experiments in Fluids, 2010, 49(2):355-365. [10] MORGAN B, DURAISAMY K, LELE S K. Large-eddy simulations of a normal shock train in a constant-area isolator[J]. AIAA Journal, 2014, 52(3):539-558. [11] SU W Y, ZHANG K Y. Back-pressure effects on the hypersonic inlet-isolator pseudoshock motions[J]. Journal of Propulsion and Power, 2013, 29(6):1391-1399. [12] KLOMPARENS R, GAMBA M, DRISCOLL J F. Boundary layer separation in a 3D shock train[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015. [13] GNANI F, ZARE-BEHTASH H, KONTIS K. Pseudo-shock waves and their interactions in high-speed intakes[J]. Progress in Aerospace Sciences, 2016, 82:36-56. [14] WANG C P, CHENG C, CHENG K M, et al. Unsteady behavior of oblique shock train and boundary layer interactions[J]. Aerospace Science and Technology, 2018, 79:212-222. [15] 田旭昂, 王成鹏, 程克明. Ma5斜激波串动态特性实验研究[J]. 推进技术, 2014, 35(8):1030-1039. TIANX A, WANG C P, CHENG K M.Experimental investigation of dynamic characteristics of oblique shock train in Mach 5 flow[J]. Journal of Propulsion Technology, 2014, 35(8):1030-1039(in Chinese). [16] BUR R, CORBEL B, DELERY J. Study of passive control in a transonic shock wave/boundary-layer interaction[J]. AIAA Journal, 1998, 36(3):394-400. [17] BENAY R, BERTHOUZE P, BUR R. Modeling of controlled shock-wave/boundary-layer interactions in transonic channel flow[J]. AIAA Journal, 2001, 39:2293-2301. [18] BRUCE P J K, BABINSKY H. Unsteady shock wave dynamics[J]. Journal of Fluid Mechanics, 2008, 603:463-473. [19] WAGNER J L, YUCEIL K B, CLEMENS N T. Velocimetry measurements of unstart of an inlet-isolator model in Mach 5 flow[J]. AIAA Journal, 2010, 48(9):1875-1888. [20] 曹学斌, 张堃元. 超燃冲压发动机隔离段非对称来流下激波串受迫振荡流动研究[J]. 空气动力学学报, 2011, 29(2):135-141. CAO X B, ZHANG K Y. Experimental study of forced shock train in isolator under asymmetric incoming flow[J]. Acta Aerodynamica Sinica, 2011, 29(2):135-141(in Chinese). [21] CHEN C P, SAJBEN M, KROUTIL J C. Shock-wave oscillations in a transonic diffuser flow[J]. AIAA Journal, 1979, 17(10):1076-1083. [22] BOGAR T J, SAJBEN M, KROUTIL J C. Characteristic frequencies of transonic diffuser flow oscillations[J]. AIAA Journal, 1983, 21(9):1232-1240. [23] LI Z F, GAO W Z, JIANG H L, et al. Unsteady behaviors of a hypersonic inlet caused by throttling in shock tunnel[J]. AIAA Journal, 2013, 51(10):2485-2492. [24] CHENG C, WANG C P, CHENG K M, et al. Experimental study of unsteady oblique shock train and boundary layer interactions[C]//21 st AIAA International Space Planes and Hypersonics Technologies Conference. Reston:AIAA, 2017. [25] JIAO X L, CHANG J T, WANG Z Q, et al. Periodic forcing of a shock train in a scramjet inlet-isolator at overspeed condition[J]. Acta Astronautica, 2018, 143:244-254. [26] NEWSOME R W. Numerical simulation of near-critical and unsteady, subcritical inlet flow[J]. AIAA Journal, 1984, 22(10):1375-1379. [27] LU P J, JAIN L T. Numerical investigation of inlet buzz flow[J]. Journal of Propulsion and Power, 1998, 14(1):90-100. [28] TRAPIER S, DUVEAU P, DECK S. Experimental study of supersonic inlet buzz[J]. AIAA Journal, 2006, 44(10):2354-2365. [29] TRAPIER S, DECK S, DUVEAU P. Delayed detached-eddy simulation and analysis of supersonic inlet buzz[J]. AIAA Journal, 2008, 46(1):118-131. [30] LEE H J, LEE B J, KIM S D, et al. Flow characteristics of small-sized supersonic inlets[J]. Journal of Propulsion and Power, 2011, 27(2):306-318. [31] KRISHNAN L, SANDHAM N D, STEELANT J. Shock-wave/boundary-layer interactions in a model scramjet intake[J]. AIAA Journal, 2009, 47(7):1680-1691. [32] KOO H, RAMAN V. Large-eddy simulation of a supersonic inlet-isolator[J]. AIAA Journal, 2012, 50(7):1596-1613. [33] 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J/OL]. 中国科学:技术科学, (2021-04-28)[2021-06-03]. https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J/OL]. Scientia Sinica Technologica, (2021-04-28)[2021-06-03]. https://kns.cnki.net/kcms/detail/11.5844.TH.20210428.0914.006.html (in Chinese). [34] 高文智, 李祝飞, 杨基明. 一种鼻锥钝化高超声速轴对称进气道流动特性实验[J]. 航空学报, 2015, 36(1):302-310. GAO W Z, LI Z F, YANG J M. Flow characteristics experiments of a hypersonic axisymmetric inlet with nose bluntness[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):302-310(in Chinese). [35] 高文智, 李祝飞, 曾亿山, 等. 前体涡发生器对轴对称高超声速进气道激波振荡流动的影响实验[J]. 力学学报, 2018, 50(2):209-220. GAO W Z, LI Z F, ZENG Y S, et al. Experimental investigations of effects of forebody vortex generators on the oscillatory flow of an axisymmetric hypersonic inlet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2):209-220(in Chinese). [36] GAO W Z, LI Z F, YANG J M, et al. Effects of trips on the oscillatory flow of an axisymmetric hypersonic inlet with downstream throttle[J]. Chinese Journal of Aeronautics, 2018, 31(2):225-236. [37] TAN H J, LI L G, WEN Y F, et al. Experimental investigation of the unstart process of a generic hypersonic inlet[J]. AIAA Journal, 2011, 49(2):279-288. [38] LU X Y, WANG S W, SUNG H G, et al. Large-eddy simulations of turbulent swirling flows injected into a dump chamber[J]. Journal of Fluid Mechanics, 2005, 527:171-195. [39] CHEN L W, XU C Y, LU X Y. Numerical investigation of the compressible flow past an aerofoil[J]. Journal of Fluid Mechanics, 2010, 643:97-126. [40] CHEN L W, WANG G L, LU X Y. Numerical investigation of a jet from a blunt body opposing a supersonic flow[J]. Journal of Fluid Mechanics, 2011, 684:85-110. [41] 王德鑫, 褚佑彪, 刘难生, 等. 凸拐角附近激波与湍流边界层干扰的数值模拟研究[J]. 空气动力学学报, 2020, 38(1):148-159. WANG D X, CHU Y B, LIU N S, et al. Numerical investigation of shock wave/boundary layer interactions near a convex corner[J]. Acta Aerodynamica Sinica, 2020, 38(1):148-159(in Chinese). [42] PIROZZOLI S, GRASSO F. Direct numerical simulations of isotropic compressible turbulence:Influence of compressibility on dynamics and structures[J]. Physics of Fluids, 2004, 16(12):4386-4407. [43] DECK S, THORIGNY P. Unsteadiness of an axisymmetric separating-reattaching flow:Numerical investigation[J]. Physics of Fluids, 2007, 19(6):065103. [44] LARSSON J, LELE S K. Direct numerical simulation of canonical shock/turbulence interaction[J]. Physics of Fluids, 2009, 21(12):126101. [45] CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46(1):469-492. [46] DUPONT P, HADDAD C, DEBIōVE J F. Space and time organization in a shock-induced separated boundary layer[J]. Journal of Fluid Mechanics, 2006, 559:255-277. [47] PIPONNIAU S, DUSSAUGE J P, DEBIōVE J F, et al. A simple model for low-frequency unsteadiness in shock-induced separation[J]. Journal of Fluid Mechanics, 2009, 629:87-108. [48] WU M W, PINO MARTÍN M. Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data[J]. Journal of Fluid Mechanics, 2008, 594:71-83. [49] SOUVEREIN L J, DUPONT P, DEBIōVE J F, et al. Effect of interaction strength on unsteadiness in shock-wave-induced separations[J]. AIAA Journal, 2010, 48(7):1480-1493. [50] PASQUARIELLO V, HICKEL S, ADAMS N A. Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number[J]. Journal of Fluid Mechanics, 2017, 823:617-657. |