孙启翔, 王万波, 黄勇
收稿日期:
2021-04-06
修回日期:
2021-06-09
出版日期:
2022-08-15
发布日期:
2021-06-08
通讯作者:
王万波,E-mail:bowanw@163.com
E-mail:bowanw@163.com
基金资助:
SUN Qixiang, WANG Wanbo, HUANG Yong
Received:
2021-04-06
Revised:
2021-06-09
Online:
2022-08-15
Published:
2021-06-08
Supported by:
摘要: 高效的振荡射流系统需要振荡特性优良的激励器,这要求减少激励器内流损失以提高出流流速、减少射流在0°偏角处的停滞时间以利于在流场中产生非定常旋涡、增大射流偏角以增大控制范围、有效调节振荡频率以接近最优控制频率。现以能大幅减少引入高压气源气体流量的吸气-振荡射流激励器为研究对象,通过数值模拟研究了不同几何外形激励器的起振、出流和频率特性。结果表明:只有当扣除射流宽度后的喉道高度大于反馈通道宽度的1.2倍,且反馈段长度足够、扩张角大小合适时,射流才会稳定振荡,并能与扩张段壁面相切;截短扩张段可使出口处射流中心速度提高67.3%;减小扩张段内分离涡的长宽比最大可使射流扫掠角达到±110°;改变反馈通道的宽度和长度会通过改变通道内通流面积和沿程损失以改变流量,从而影响频率。
中图分类号:
孙启翔, 王万波, 黄勇. 吸气-振荡射流激励器振荡特性[J]. 航空学报, 2022, 43(8): 125627.
SUN Qixiang, WANG Wanbo, HUANG Yong. Oscillation characteristics of suction and oscillatory blowing actuator[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 125627.
[1] VIETS H. Flip-flop jet nozzle[J]. AIAA Journal, 1975, 13(10): 1375-1379. [2] GREGORY J W, SULLIVAN J P, RAMAN G, et al. Characterization of the microfluidic oscillator[J]. AIAA Journal, 2007, 45(3): 568-576. [3] SEELE R, TEWES P, WOSZIDLO R, et al. Discrete sweeping jets as tools for improving the performance of the V-22[J]. Journal of Aircraft, 2009, 46(6): 2098-2106. [4] 刘影, 李春鹏, 张铁军, 等. 后缘连续偏转机翼振荡射流控制的数值模拟研究[J]. 航空科学技术, 2020, 31(5): 36-43. LIU Y, LI C P, ZHANG T J, et al. Numerical simulation of oscillating jet control for trailing edge continuous deflection wing[J]. Aeronautical Science & Technology, 2020, 31(5): 36-43 (in Chinese). [5] 程永卓, 李宇红, 霍福鹏, 等. 振荡射流控制翼型流动分离的数值模拟[J]. 清华大学学报(自然科学版), 2002, 42(12): 1644-1646, 1666. CHENG Y Z, LI Y H, HUO F P, et al. Numerical simulation of oscillating excitation separation flow control over airfoils[J]. Journal of Tsinghua University (Science and Technology), 2002, 42(12): 1644-1646, 1666 (in Chinese). [6] RAMAN G, RAGHU S. Cavity resonance suppression using miniature fluidic oscillators[J]. AIAA Journal, 2004, 42(12): 2608-2612. [7] GUYOT D, BOBUSCH B, PASCHEREIT C O, et al. Active combustion control using a fluidic oscillator for asymmetric fuel flow modulation[J]. International Journal of Flow Control, 2009, 1(2): 155-166. [8] 吴双应, 曾丹苓, 李友荣. 自激振荡脉冲射流强化传热实验及其性能评价[J]. 石油化工设备, 2005, 34(6): 1-5. WU S Y, ZENG D L, LI Y R. Performance evaluation and experiment for self-oscillation pulsating flow in forced convection heat transfer[J]. Petro-Chemical Equipment, 2005, 34(6): 1-5 (in Chinese). [9] TOMAC M N, GREGORY J W. Internal jet interactions in a fluidic oscillator at low flow rate[J]. Experiments in Fluids, 2014, 55(5): 1730. [10] ARWATZ G, FONO I, SEIFERT A. Suction and oscillatory blowing actuator modeling and validation[J]. AIAA Journal, 2008, 46(5): 1107-1117. [11] BOBUSCH B C, WOSZIDLO R, BERGADA J M, et al. Experimental study of the internal flow structures inside a fluidic oscillator[J]. Experiments in Fluids, 2013, 54(6): 1559. [12] WOSZIDLO R, WYGNANSKI I. Parameters governing separation control with sweeping jet actuators: AIAA-2011-3172[R]. Reston: AIAA, 2011. [13] BAUER M, LOHSE J, HAUCKE F, et al. High-lift performance investigation of a two-element configuration with a two-stage actuator system[J]. AIAA Journal, 2014, 52(6): 1307-1313. [14] PACK MELTON L G, KOKLU M. Active flow control using sweeping jet actuators on a semi-span wing model: AIAA-2016-1817[R]. Reston: AIAA, 2016. [15] KARA K, SLUPSKI B J. Separated flow control over NACA 0012 airfoil using sweeping jet actuators: AIAA-2017-3043[R]. Reston: AIAA, 2017. [16] LUCAS N, TAUBERT L, WOSZIDLO R, et al. Discrete sweeping jets as tools for separation control: AIAA-2008-3868[R]. Reston: AIAA, 2008. [17] TEWES P, TAUBERT L, WYGNANSKI I. On the use of sweeping jets to augment the lift of a λ-wing: AIAA-2010-4689[R]. Reston: AIAA, 2010. [18] JONES G S, MILHOLEN W E, CHAN D T, et al. A sweeping jet application on a high Reynolds number semi-span supercritical wing configuration: AIAA-2017-3044[R]. Reston: AIAA, 2017. [19] 朱自强, 王凯, 黄波恩. 增强立尾效益的主动流动控制[J]. 航空学报, 2018, 39(5): 121684. ZHU Z Q, WANG K, HUANG B E. Active flow control for enhancing vertical tail efficiency[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121684 (in Chinese). [20] SCHLOESSER P, MEYER M, SCHUELLER M, et al. Fluidic actuators for separation control at the engine/wing junction[J]. Aircraft Engineering and Aerospace Technology, 2017, 89(5): 709-718. [21] WILSON J, SCHATZMAN D, ARAD E, et al. Suction and pulsed-blowing flow control applied to an axisymmetric body[J]. AIAA Journal, 2013, 51(10): 2432-2446. [22] KIM J, MOIN P, SEIFERT A. Large-eddy simulation-based characterization of suction and oscillatory blowing fluidic actuator[J]. AIAA Journal, 2017, 55(8): 2566-2579. [23] DOLGOPYAT D, SEIFERT A. Active flow control virtual maneuvering system applied to conventional airfoil[J]. AIAA Journal, 2018, 57(1): 72-89. [24] KOKLU M, OWENS L R. Comparison of sweeping jet actuators with different flow-control techniques for flow-separation control[J]. AIAA Journal, 2017, 55(3): 848-860. [25] KOKLU M. Effect of a Coanda extension on the performance of a sweeping-jet actuator[J]. AIAA Journal, 2016, 54(3): 1125-1128. [26] WOSZIDLO R, OSTERMANN F, NAYERI C N, et al. The time-resolved natural flow field of a fluidic oscillator[J]. Experiments in Fluids, 2015, 56(6): 125. [27] BOBUSCH B C, WOSZIDLO R, KRÜGER O, et al. Numerical investigations on geometric parameters affecting the oscillation properties of a fluidic oscillator: AIAA-2013-2709[R]. Reston: AIAA, 2013. [28] SEO J H, ZHU C, MITTAL R. Flow physics and frequency scaling of sweeping jet fluidic oscillators[J]. AIAA Journal, 2018, 56(6): 2208-2219. [29] TIPPETTS J R, NG H K, ROYLE J K. Oscillating bistable fluid amplifier for use as a flowmeter[J]. Fluidics Quarterly, 1973, 5(1): 28-42. [30] GOKOGLU S, KUCZMARSKI M, CULLEY D, et al. Numerical studies of a fluidic diverter for flow control: AIAA-2009-4012[R]. Reston: AIAA, 2009. [31] GOKOGLU S, KUCZMARSKI M, CULLEY D, et al. Numerical studies of a supersonic fluidic diverter actuator for flow control: AIAA-2010-4415[R]. Reston: AIAA, 2010. [32] WOSZIDLO R, OSTERMANN F, NAYERI C N, et al. The time-resolved natural flow field of a fluidic oscillator[J]. Experiments in Fluids, 2015, 56(6): 125. |
[1] | 李卓远 杨旭东 孙恺 熊俊辉 史帅. 分布式涵道风扇气动布局复杂强干扰流及性能影响[J]. 航空学报, 0, (): 0-0. |
[2] | 李庆军 贾贺 鲁媛媛 徐方暖 王博. 基于ANCF和SPH的柔性降落伞流固耦合动力学仿真[J]. 航空学报, 0, (): 0-0. |
[3] | 单程军 贡天宇 易理哲 杨浩辉 龙垚松. 超声速民机高效高可信度声爆/气动多学科优化方法[J]. 航空学报, 0, (): 0-0. |
[4] | 杨超 邹志诚 谢长川 安朝 胡存佚. RBF动网格技术研究进展及其气动弹性应用[J]. 航空学报, 0, (): 0-0. |
[5] | 李思桐, 夏露, 周琳, 赵轲. 考虑涂敷的翼型气动高频电磁隐身一体化设计[J]. 航空学报, 2024, 45(17): 529874-529874. |
[6] | 龙家俊, 刘陈飘, 秦飞, 张加乐, 徐圣冠, 高宜胜. 基于Liutex的数据驱动湍流模型修正[J]. 航空学报, 2024, 45(15): 129579-129579. |
[7] | 路宽, 宋文萍, 郭恒博, 叶坤, 王跃, 韩忠华. 基于空间嵌套径向基函数的高效并行网格变形方法[J]. 航空学报, 2024, 45(15): 129433-129433. |
[8] | 吴文昌 韩省思 闵耀兵 燕振国 马燕凯. 光滑型TENO非线性加权的六阶低耗散WCNS-CU6-ST格式[J]. 航空学报, 0, (): 0-0. |
[9] | 李广宁 雷坤鹏 安效民 徐敏 许勇.
跨声速穿越的翼型变马赫数效应虚拟飞行仿真
[J]. 航空学报, 0, (): 0-0. |
[10] | 刘嘉文, 王明振, 欧阳文轩, 虞建, 刘学军, 吕宏强. 针对高阶间断伽辽金数值格式的Gibbs现象智能去噪方法[J]. 航空学报, 2024, 45(14): 129323-129323. |
[11] | 任靖豪, 王强, 陈宁立, 刘宇, 易贤. 多段翼构型结冰计算方法及结冰影响分析[J]. 航空学报, 2024, 45(14): 129328-129328. |
[12] | 胡震宇, 肖丰收, 陈坚强, 袁先旭, 张毅锋, 向星皓. 基于C-γ-Reθ 模型的多模态高超声速边界层转捩预测[J]. 航空学报, 2024, 45(12): 129215-129215. |
[13] | 余龙舟, 黄江涛, 钟世东, 陈宪, 陈诚. 电磁不连续和缺陷结构表面波散射特性[J]. 航空学报, 2024, 45(12): 329467-329467. |
[14] | 王子运, 于航, 张悦, 谭慧俊, 金毅, 李鑫. 空天飞行器可调进气系统关键问题研究进展[J]. 航空学报, 2024, 45(11): 529440-529440. |
[15] | 孟亮, 张靖, 王亚栋, 于洋, 张帆, 朱继宏, 张卫红. 发动机外涵道机匣加筋布局轻量化设计[J]. 航空学报, 2024, 45(11): 529021-529021. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学