1 |
王圣业, 邓小刚, 董义道, 等. 面向工程湍流的高精度数值方法[J]. 航空学报, 2023, 44(15): 528728.
|
|
WANG S Y, DENG X G, DONG Y D, et al. High-order numerical methods for engineering turbulence simulation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528728 (in Chinese).
|
2 |
REED W H, HILL T R. Triangular mesh methods for the neutron transport equation: LA-UR-73-479[R]. New Mexico: Los Alamos Scientific Lab., 1973.
|
3 |
BASSI F, REBAY S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[J]. Journal of Computational Physics, 1997, 131(2): 267-279.
|
4 |
BASSI F, REBAY S. High-order accurate discontinuous finite element solution of the 2D Euler equations[J]. Journal of Computational Physics, 1997, 138(2): 251-285.
|
5 |
FERRER E, RUBIO G, NTOUKAS G, et al. HORSES3D: A high-order discontinuous Galerkin solver for flow simulations and multi-physics applications[J]. Computer Physics Communications, 2023, 287: 108700.
|
6 |
吕宏强, 张涛, 孙强, 等. 间断伽辽金方法在可压缩流数值模拟中的应用研究综述[J]. 空气动力学学报, 2017, 35(4): 455-471.
|
|
LYU H Q, ZHANG T, SUN Q, et al. Applications of discontinuous Galerkin method in numerical simulations of compressible flows: A review[J]. Acta Aerodynamica Sinica, 2017, 35(4): 455-471 (in Chinese).
|
7 |
GIBBS J W. Fourier’s series[J]. Nature, 1899, 59(1539): 606.
|
8 |
GOTTLIEB D, HESTHAVEN J S. Spectral methods for hyperbolic problems[J]. Journal of Computational and Applied Mathematics, 2001, 128(1/2): 83-131.
|
9 |
赵辉, 张耀冰, 陈江涛, 等. 基于阶跃的 Laplacian 人工粘性激波捕捉方法在高精度 DG 方法中的应用[C]∥ 中国力学学会学术大会论文集. 北京:中国力学学会, 2019.
|
|
ZHAO H, ZHANG Y B, CHEN J T, et al. Application of step-based Laplacian artificial viscosity shock capturing method in high-precision DG method [C]∥ Proceedings of Chinese Congress of Theoretical and Applied Mechanics. Beijing: The Chinese Society of Theoretical and Applied Mechanics, 2019 (in Chinese).
|
10 |
COCKBURN B, LIN S Y, SHU C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems[J]. Journal of Computational Physics, 1989, 84(1): 90-113.
|
11 |
COCKBURN B, SHU C W. The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems [J]. Journal of Computational Physics, 1998, 141(2): 199-224.
|
12 |
QIU J X, SHU C W. A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters[J]. SIAM Journal on Scientific Computing, 2005, 27(3): 995-1013.
|
13 |
ZHU J, QIU J X, SHU C W, et al. Runge-Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes[J]. Journal of Computational Physics, 2008, 227(9): 4330-4353.
|
14 |
HARTMANN R. Adaptive discontinuous Galerkin methods with shock-capturing for the compressible Navier-Stokes equations[J]. International Journal for Numerical Methods in Fluids, 2006, 51(9/10): 1131-1156.
|
15 |
HARTMANN R, HOUSTON P. Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations[J]. Journal of Computational Physics, 183(2): 508-532.
|
16 |
DISCACCIATI N, HESTHAVEN J S, RAY D. Controlling oscillations in high-order discontinuous Galerkin schemes using artificial viscosity tuned by neural networks[J]. Journal of Computational Physics, 2020, 409: 109304.
|
17 |
ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155.
|
18 |
MUCKLEY M J, ADES-ARON B, PAPAIOANNOU A, et al. Training a neural network for Gibbs and noise removal in diffusion MRI[J]. Magnetic Resonance in Medicine, 2021, 85(1): 413-428.
|
19 |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]∥ Proceedings of 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2015: 234-241.
|
20 |
BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[DB/OL]. arXiv: , 2013.
|
21 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[DB/OL]. arXiv: , 2016.
|
22 |
YING R, HE R N, CHEN K F, et al. Graph convolutional neural networks for web-scale recommender systems[C]∥ Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 974–983.
|
23 |
SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[M]∥ The Semantic Web. Cham: Springer International Publishing, 2018: 593-607.
|
24 |
WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24.
|
25 |
HUBEL D H, WIESEL T N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
|
26 |
WANG Y W, HU Z N, YE Y S, et al. Demystifying graph neural network via graph filter assessment[C]∥ International Conference on Learning Representations. 2020.
|
27 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]∥ 31st Conference on Neural Information Processing Systems. 2017.
|
28 |
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[DB/OL]. arXiv: , 2017.
|
29 |
吕宏强, 伍贻兆, 周春华, 等. 稀疏非结构网格上的亚声速流高精度数值模拟[J]. 航空学报, 2009, 30(2): 200-204.
|
|
LYU H Q, WU Y Z, ZHOU C H, et al. High resolution of subsonic flows on coarse grids[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2): 200-204 (in Chinese).
|
30 |
徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780.
|
|
XU B B, CEN K T, HUANG J J, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43(5): 755-780 (in Chinese).
|
31 |
KINGMA D P, BA J. Adam: A method for stochastic optimization[DB/OL]. arXiv: , 2014.
|
32 |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536.
|
33 |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
|
34 |
孙强. 自适应间断Galerkin有限元方法的可压缩流数值模拟[D]. 南京: 南京航空航天大学, 2017.
|
|
SUN Q. An adaptive discontinuous Galerkin method for numerical simulation of compressible flows[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese).
|
35 |
PULLIAM T H, STEGER J L. Recent improvements in efficiency, accuracy, and convergence for implicit approximate factorization algorithms: AIAA-1985-0360[R]. Reston: AIAA, 1985.
|
36 |
PERSSON P O, PERAIRE J. Sub-cell shock capturing for discontinuous Galerkin methods: AIAA-2006-0112[R]. Reston: AIAA, 2006.
|
37 |
HUANG L T, JIANG Z H, LOU S, et al. Simple and robust h-adaptive shock-capturing method for flux reconstruction framework[J]. Chinese Journal of Aeronautics, 2023, 36(7): 348-365.
|