收稿日期:
2024-04-02
修回日期:
2024-05-23
接受日期:
2024-09-19
出版日期:
2024-09-24
发布日期:
2024-09-23
通讯作者:
龙垚松
E-mail:longyaosong@hust.edu.cn
Chengjun SHAN, Tianyu GONG, Lizhe YI, Haohui YANG, Yaosong LONG()
Received:
2024-04-02
Revised:
2024-05-23
Accepted:
2024-09-19
Online:
2024-09-24
Published:
2024-09-23
Contact:
Yaosong LONG
E-mail:longyaosong@hust.edu.cn
摘要:
如何降低声爆强度和提高巡航气动效率是超声速民机的关键研究问题之一。针对目前声爆/气动多学科优化研究中存在的高可信度优化效率低和忽略大尺度布局参数等问题,提出了一种超声速民机高效高可信度声爆/气动多学科优化方法。自研了一套基于非线性Burgers方程的远场声爆传播程序“BoomProp”,结合基于CFD的近场流动预测方法,建立了高可信度地面声爆强度预测流程。采用基于CEHVIM准则的高效全局约束多目标优化算法,耦合高维不规则设计空间的最优拉丁超体试验设计方法、布局参数化自动成型、网格自动生成与高可信度声爆/气动性能预测方法,搭建了超声速民机高效高可信度声爆/气动多学科优化平台。基于该平台针对机翼布局开展了声爆/气动多学科优化,优化结果在声爆与阻力性能方面有较为明显提升,同时与基于Kriging代理模型的NSGA-Ⅱ多目标遗传算法对比,综合验证了所提出方法的有效性与高效性。
中图分类号:
单程军, 贡天宇, 易理哲, 杨浩辉, 龙垚松. 超声速民机高效高可信度声爆/气动多学科优化方法[J]. 航空学报, 2024, 45(24): 630573.
Chengjun SHAN, Tianyu GONG, Lizhe YI, Haohui YANG, Yaosong LONG. High-efficiency and high-reliability sonic boom/aerodynamic multidisciplinary optimization method for supersonic civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 630573.
1 | 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2): 626310. |
DING Y L, HAN Z H, QIAO J L, et al. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 626310 (in Chinese). | |
2 | 刘秉宜, 高渤程, 潘锐. 国外主要超声速民机经济性研究及对我启示[C]∥ 第六届中国航空科学技术大会论文集. 北京: 中国航空学会, 2023. |
LIU B Y, GAO B C, PAN R. Research on the economics of major foreign supersonic civil aircraft and its implications for China[C]∥ Proceedings of the 6th China Aviation Science and Technology Conference. Beijing:Chinese Society of Aeronautics and Astronautics, 2023 (in Chinese). | |
3 | 张力文, 宋文萍, 韩忠华, 等. 声爆产生、传播和抑制机理研究进展[J]. 航空学报, 2022, 43(12): 025649. |
ZHANG L W, SONG W P, HAN Z H, et al. Recent progress of sonic boom generation, propagation, and mitigation mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 025649 (in Chinese). | |
4 | 马博平. 超声速低阻低声爆气动布局研究[D]. 西安: 西北工业大学, 2020. |
MA B P. Study on aerodynamic layout of supersonic low resistance low sound explosion[D]. Xi’an: Northwestern Polytechnical University, 2020 (in Chinese). | |
5 | SOBIESZCZANSKI-SOBIESKI J. Multidisciplinary optimization for engineering systems: Achievements and potential[C]∥Optimization: Methods and Applications, Possibilities and Limitations. Berlin: Springer, 1989: 42-62. |
6 | SOBIESZCZANSKI-SOBIESKI J, CHOPRA I. Multidisciplinary optimization of aeronautical systems[J]. Journal of Aircraft, 1990, 27(12): 977-978. |
7 | RAYMER D. Aircraft design: A conceptual approach[M]. 5th ed. Washington, D.C.: AIAA, Inc., 2012. |
8 | 余雄庆. 飞机总体多学科设计优化的现状与发展方向[J]. 南京航空航天大学学报, 2008, 40(4): 417-426. |
YU X Q. Multidisciplinary design optimization for aircraft conceptual and preliminary design: Status and directions[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(4): 417-426 (in Chinese). | |
9 | 薛小龙. 某型制导火箭弹多学科优化设计研究[D]. 成都:电子科技大学, 2009. |
XUE X L. Research on multidisciplinary optimization design of a certain guided rocket[D]. Chengdu: University of Electronic Science and Technology of China, 2009 (in Chinese). | |
10 | 张晓萍. 联接翼飞机气动/结构一体化设计研究[D]. 南京: 南京航空航天大学, 2006. |
ZHANG X P. Research on aerodynamic/structural integration design of connected wing aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006 (in Chinese). | |
11 | MOHAMMADI B, PIRONNEAU O. Shape optimization in fluid mechanics[J]. Annual Review of Fluid Mechanics, 2004, 36: 255-279. |
12 | DARDEN C M. Sonic-boom minimization with nose-bluntness relaxation: L-12464[R]. Hampton: NASA Langley Research Center, 1979. |
13 | RALLABHANDI S K, MAVRIS D N. Sonic boom minimization using inverse design and probabilistic acoustic propagation[J]. Journal of Aircraft, 2006, 43(6): 1815-1828. |
14 | CHAN M K. Supersonic aircraft optimization for minimizing drag and sonic boom[M]. Palo Alto: Stanford University, 2003 |
15 | FENG X Q, LI Z K, SONG B F. Research of low boom and low drag supersonic aircraft design[J]. Chinese Journal of Aeronautics, 2014, 27(3): 531-541. |
16 | CHOI S, ALONSO J J, KROO I M, et al. Multifidelity design optimization of low-boom supersonic jets[J]. Journal of Aircraft, 2008, 45(1): 106-118. |
17 | 冯晓强, 李占科, 宋笔锋, 等. 基于混合网格的声爆/气动一体化设计方法研究[J]. 空气动力学学报, 2014, 32(1): 30-37. |
FENG X Q, LI Z K, SONG B F, et al. Optimization of sonicboom and aerodynamic based on structured/unstructured hybrid grid[J]. Acta Aerodynamica Sinica, 2014, 32(1): 30-37 (in Chinese). | |
18 | 王浩, 钟敏, 韩硕, 等. 超声速公务机气动声爆耦合优化设计探索[C]∥ 第六届中国航空科学技术大会论文集. 北京: 中国航空学会, 2023. |
WANG H, ZHONG M, HAN S, et al. Exploration of aerodynamic sonic-boom coupled optimization design of supersonic business jet[C]∥ The 6th China Aeronautical Science and Technology Conference (CASTC 2023). Beijing: Chinese Society of Aeronautics and Astronautics, 2023 (in Chinese). | |
19 | 罗骁, 宋超, 陈波, 等. 超声速客机多目标优化与不确定性分析研究[C]∥ 第六届中国航空科学技术大会论文集. 北京: 中国航空学会, 2023. |
LUO X, SONG C, CHEN B, et al. Research on multi-objective optimization and uncertainty analysis of supersonic passenger aircraft[C]∥ Proceedings of the 6th China Aviation Science and Technology Conference. Beijing: Chinese Society of Aeronautics and Astronautics, 2023 (in Chinese). | |
20 | 张文琦. 低阻低声爆超声速公务机气动布局设计技术研究[C]∥ 第八届中国航空学会青年科技论坛论文集. 北京: 中国航空学会, 2018. |
ZHANG W Q. Research on aerodynamic layout design technology of low resistance low explosion supersonic business aircraft[C]∥ Proceedings of the 8th China Aeronautical Society Youth Science and Technology Forum. Beijing:Chinese Society of Aeronautics and Astronautics, 2018 (in Chinese). | |
21 | NADARAJAH S, JAMESON A, ALONSO J. Sonic boom reduction using an adjoint method for wing-body configurations in supersonic flow[C]∥ Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 2002. |
22 | AFTOSMIS M J, NEMEC M, CLIFF S E. Adjoint-based low-boom design with Cart3D[C]∥ 29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011. |
23 | ORDAZ I, GEISELHART K A, FENBERT J W. Conceptual design of low-boom aircraft with flight trim requirement[J]. Journal of Aircraft, 2015, 52(3): 932-939. |
24 | MUNGUÍA B C, ECONOMON T D, ALONSO J J. A discrete adjoint framework for low-boom supersonic aircraft shape optimization[C]∥ Proceedings of the 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2017. |
25 | RALLABHANDI S. Sonic boom adjoint methodology and its applications[C]∥ Proceedings of the 29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011. |
26 | 黄江涛, 张绎典, 高正红, 等. 基于流场/声爆耦合伴随方程的超声速公务机声爆优化[J]. 航空学报, 2019, 40(5):122505. |
HUANG J T, ZHANG Y D, GAO Z H, et al. Sonic boom optimization of supersonic jet based on flow/sonic boom coupled adjoint equations[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122505 (in Chinese). | |
27 | 刘峰博, 郝海兵, 李典, 等. 兼顾气动和近场声爆特性的伴随优化[J]. 空气动力学学报, 2023, 41(5): 48-58. |
LIU F B, HAO H B, LI D, et al. Adjoint-based design optimization considering both aerodynamic and near-field sonic boom[J]. Acta Aerodynamica Sinica, 2023, 41(5): 48-58 (in Chinese). | |
28 | ECONOMON T D, PALACIOS F, COPELAND S R, et al. SU2: An open-source suite for multiphysics simulation and design[J]. AIAA Journal, 2016, 54(3): 828-846. |
29 | JAMESON A, SCHMIDT W, TURKEL E. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes[C]∥ Proceedings of the 14th Fluid and Plasma Dynamics Conference. Reston: AIAA, 1981. |
30 | JAMESON A, YOON S. Lower-upper implicit schemes with multiple grids for the Euler equations[J]. AIAA Journal, 1987, 25(7): 929-935. |
31 | WALKDEN F. The shock pattern of a wing-body combination, far from the flight path[J]. Aeronautical Quarterly, 1958, 9(2): 164-194. |
32 | THOMAS C L. Extrapolation of sonic boom pressure signatures by the waveform parameter method: A-4232[R]. Moffett Field: NASA Ames Research Center, 1972. |
33 | RALLABHANDI S K. Advanced sonic boom prediction using the augmented Burgers equation[J]. Journal of Aircraft, 2011, 48(4): 1245-1253. |
34 | YAMAMOTO M, HASHIMOTO A, TAKAHASHI T, et al. Numerical simulation for sonic boom propagation through an Inhomogeneous atmosphere with winds[C]∥ AIP Conference Proceedings. New York: AIP, 2012. |
35 | 乔建领, 韩忠华, 丁玉临, 等. 基于广义Burgers方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报, 2019, 37(4): 663-674. |
QIAO J L, HAN Z H, DING Y L, et al. Sonic boom prediction method for supersonic transports based on augmented Burgers equation[J]. Acta Aerodynamica Sinica, 2019, 37(4): 663-674 (in Chinese). | |
36 | 钱祖文. 非线性声学[M]. 2版. 北京: 科学出版社, 2009. |
QIAN Z W. Nonlinear acoustics[M]. 2nd ed. Beijing: Science Press, 2009 (in Chinese). | |
37 | 崔青, 白俊强, 宋源, 等. 基于增广Burgers方程的超声速客机远场声爆预测研究[J]. 航空工程进展, 2021, 12(2): 88-97. |
CUI Q, BAI J Q, SONG Y, et al. Research on far-field acoustic explosion prediction of supersonic aircraft based on augmented Burgers equation[J]. Advances in Aeronautical Science and Engineering, 2021, 12(2): 88-97 (in Chinese). | |
38 | STEVENS S S. Perceived level of noise by mark VII and decibels (E)[J]. The Journal of the Acoustical Society of America, 1972, 51(2B): 575-601. |
39 | PARK M A, MORGENSTERN J M. Summary and statistical analysis of the first AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2016, 53(2): 578-598. |
40 | RALLABHANDI S K, LOUBEAU A. Summary of propagation cases of the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2019, 56(3): 876-895. |
41 | ANDERSON G R, AFTOSMIS M J, NEMEC M. Cart3D simulations for the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2019, 56(3): 896-911. |
42 | KNOWLES J, CORNE D. Properties of an adaptive archiving algorithm for storing nondominated vectors[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 100-116. |
43 | BADER J, ZITZLER E. HypE: An algorithm for fast hypervolume-based many-objective optimization[J]. Evolutionary Computation, 2011, 19(1): 45-76. |
44 | ZHAN D W, CHENG Y S, LIU J. Expected improvement matrix-based infill criteria for expensive multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(6): 956-975. |
45 | PANG Y, YANG L L, WANG Y T, et al. A Latin hypervolume design for irregular sampling spaces and its application in the analysis of cracks[J]. Engineering with Computers, 2023, 39(5): 3509-3526. |
46 | 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4): 620-635. |
HAN Z H, QIAO J L, DING Y L, et al. Key technologies for next-generation environmentally-friendly supersonic transport aircraft: A review of recent progress[J]. Acta Aerodynamica Sinica, 2019, 37(4): 620-635 (in Chinese). |
[1] | 刘琦, 史勇杰, 胡志远, 徐国华. 共轴刚性旋翼气动及噪声特性的参数影响分析[J]. 航空学报, 2024, 45(9): 528856-528856. |
[2] | 李军府, 陈晴, 王伟, 韩忠华, 谭玉婷, 丁玉临, 谢露, 乔建领, 宋科, 艾俊强. 一种先进超声速民机低声爆高效气动布局设计[J]. 航空学报, 2024, 45(6): 629613-629613. |
[3] | 刘明奇, 韩忠华, 杜涛, 许晨舟, 曾涵, 张科施, 宋文萍. 面向运载火箭栅格舵的最优操纵效率特征与宽速域气动优化设计方法[J]. 航空学报, 2024, 45(20): 129887-129887. |
[4] | 李立, 梁益华, 杨永, 武君胜. WiseCFD V2023:一种基于开放架构的CFD软件验证与确认应用支持平台[J]. 航空学报, 2024, 45(20): 630440-630440. |
[5] | 陆凤霞, 韦坤, 王春雷, 鲍和云, 朱如鹏. 直升机中减三相流金属屑末可达性[J]. 航空学报, 2024, 45(1): 128524-128524. |
[6] | 任炯, 王刚, 胡国栋, 石晓露. 自适应Walsh函数有限体积方法[J]. 航空学报, 2023, 44(8): 127444-127444. |
[7] | 曹文博, 刘溢浪, 张伟伟. 基于降阶模型和梯度优化的流场加速收敛方法[J]. 航空学报, 2023, 44(6): 127090-127090. |
[8] | 刘思华, 王占莹, 李利剑, 张敏弟. 头型对射弹高速入水稳定性的影响[J]. 航空学报, 2023, 44(21): 528437-528437. |
[9] | 樊宇翔, 赵瑞, 左政玄, 杨光, 李宇. 气体引射效应对壁面热流和摩擦阻力的影响[J]. 航空学报, 2023, 44(21): 528587-528587. |
[10] | 王迪, 冷岩, 杨龙, 韩忠华, 钱战森. 基于广义Burgers方程的声爆传播特性大气湍流影响[J]. 航空学报, 2023, 44(2): 626318-626318. |
[11] | 丁玉临, 韩忠华, 乔建领, 聂晗, 宋文萍, 宋笔锋. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2): 626310-626310. |
[12] | 顾奕然, 黄江涛, 陈树生, 刘德园, 高正红. 基于逆向增广Burgers方程的声爆反演技术[J]. 航空学报, 2023, 44(2): 626258-626258). |
[13] | 乔建领, 韩忠华, 丁玉临, 宋文萍, 宋笔锋. 分层大气湍流场对远场声爆传播的影响[J]. 航空学报, 2023, 44(2): 626350-626350. |
[14] | 徐善劼, 吕宏强, 刘中臣, 冷岩, 刘学军. 基于概率模型的声爆试验数据分析[J]. 航空学报, 2023, 44(2): 626269-626269. |
[15] | 刘中臣, 钱战森, 李雪飞, 冷岩, 郭大鹏. 发动机喷管羽流对近场声爆特性影响的风洞试验技术[J]. 航空学报, 2023, 44(2): 626952-626952. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学