1 |
何青松, 王立武, 王寒冰, 等. 航天器海上伞降回收技术发展与展望[J]. 航天器工程, 2021, 30(4): 124-133.
|
|
HE Q S, WANG L W, WANG H B,et al. Spacecraft parachute offshore recovery development and prospect[J]. Spacecraft Engineering, 2021, 30(4):124-133 (in Chinese).
|
2 |
贾贺, 邹天琪, 荣伟, 等. 不同行星大气下直径比对降落伞气动特性的影响研究[J]. 航天返回与遥感. 2023, 44(1): 70-83.
|
|
JIA H, ZOU T Q, RONG W, et al. Influence of diameter ratio on the aerodynamic performance of parachute system under different atmospheric conditions [J]. Spacecraft Recovery & Remote Sensing, 2023, 44(1): 70-83 (in Chinese).
|
3 |
徐欣, 贾贺, 陈雅倩, 等. 织物透气性对火星用降落伞气动特性影响机理[J]. 航空学报, 2022, 43(12): 126289.
|
|
XU X, JIA H, CHEN Y Q, et al. Influence mechanism of fabric permeability of canopy on aerodynamic performance of Mars parachute[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126289 (in Chinese).
|
4 |
柯鹏, 杨春信, 杨雪松, 等. 重型货物空投系统过程仿真及特性分析[J]. 航空学报, 2006, 27(5): 856-860.
|
|
KE P, YANG C X, YANG X S, et al. System simulation and analysis of heavy cargo airdrop system[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5): 856-860 (in Chinese).
|
5 |
孙志鸿, 仇博文, 余莉, 等. 伞衣织物微孔射流透气特性[J]. 清华大学学报(自然科学版). 2023, 63(3): 330-337.
|
|
SUN Z H, QIU B W, YU L,et al. Micropore jet permeability characteristics of the canopy fabric[J]. Journal of Tsinghua University (Science and Technology), 2023,63(3): 330-337 (in Chinese).
|
6 |
王学, 冯志刚, 高普云, 等. 降落伞可靠性评定及其试验量决策[J]. 宇航学报, 2010, 31(6): 1685-1689.
|
|
WANG X, FENG Z G, GAO P Y, et al. Parachute reliability assessment and decision-making of experiment times[J]. Journal of Astronautics, 2010, 31(6): 1685-1689 (in Chinese).
|
7 |
高畅, 李岩军, 余莉, 等. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329.
|
|
GAO C, LI Y J, YU L, et al. Effect of sail fullness on the aerodynamic performance of ringsail parachutes[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(3): 322-329 (in Chinese).
|
8 |
简相辉, 金哲岩. 降落伞工作过程数值模拟研究综述[J]. 航空科学技术, 2016, 27(10): 1-7.
|
|
JIAN X H, JIN Z Y. Review on the development of numerical simulations on parachutes[J]. Aeronautical Science & Technology, 2016, 27(10): 1-7 (in Chinese).
|
9 |
昌飞, 贾贺. 基于BP神经网络的降落伞气动力参数辨识[J]. 航天返回与遥感, 2024, 45(2): 19-28.
|
|
CHANG F, JIA H. Aerodynamic parameter estimation of parachute based on BP neural network[J]. Spacecraft Recovery & Remote Sensing, 2024, 45(2): 19-28 (in Chinese).
|
10 |
刘钒, 舒昌, 刘刚. 基于IB-LBFS和绝对节点坐标法的降落伞柔性结构流固耦合数值模拟[J]. 气体物理, 2020, 5(3): 59-68.
|
|
LIU F, SHU C, LIU G. Fluid-structure interaction simulation of parachute based on IB-LBFS and absolute nodal coordinate formulation[J]. Physics of Gases, 2020, 5(3): 59-68 (in Chinese).
|
11 |
XUE X P, WEN C Y. Review of unsteady aerodynamics of supersonic parachutes[J]. Progress in Aerospace Sciences, 2021, 125: 100728.
|
12 |
CAO Y H, NIE S, WU Z L. Numerical simulation of parachute inflation: A methodological review[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(2): 736-766.
|
13 |
贾贺, 荣伟, 陈国良. 基于LS-DYNA软件的降落伞充气过程仿真研究[J]. 航天器环境工程, 2010, 27(3): 367-373.
|
|
JIA H, RONG W, CHEN G L. The simulation of parachute inflation process based on LS-DYNA[J]. Spacecraft Environment Engineering, 2010, 27(3): 367-373 (in Chinese).
|
14 |
CHEN B Q, WANG Y D, ZHAO C D, et al. Numerical visualization of drop and opening process for parachute-payload system adopting fluid-solid coupling simulation[J]. Journal of Visualization, 2022, 25(2): 229-246.
|
15 |
ZHU H, TAO J, SUN Q L, et al. Effect of shear modulus on the inflation deformation of parachutes based on fluid-structure interaction simulation[J]. Sustainability, 2023, 15(6): 5396.
|
16 |
YANG X, YU L, LIU M, et al. Fluid structure interaction simulation of supersonic parachute inflation by an interface tracking method[J]. Chinese Journal of Aeronautics, 2020, 33(6): 1692-1702.
|
17 |
NIE S C, YU L, LI Y J, et al. Fluid structure interaction of supersonic parachute with material failure[J]. Chinese Journal of Aeronautics, 2023, 36(10): 90-100.
|
18 |
KIM Y, PESKIN C S. 3-D Parachute simulation by the immersed boundary method[J]. Computers & Fluids, 2009, 38(6): 1080-1090.
|
19 |
BOUSTANI J, BARAD M F, KIRIS C C, et al. An immersed boundary fluid-structure interaction method for thin, highly compliant shell structures[J]. Journal of Computational Physics, 2021, 438: 110369.
|
20 |
BOUSTANI J, BARAD M F, KIRIS C C, et al. An immersed interface methodology for simulating supersonic spacecraft parachutes with fluid-structure interaction[J]. Journal of Fluids and Structures, 2022, 114: 103742.
|
21 |
LIU M B, ZHANG Z L. Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(8): 984701.
|
22 |
XU F, WANG J Y, YANG Y, et al. On methodology and application of smoothed particle hydrodynamics in fluid, solid and biomechanics[J]. Acta Mechanica Sinica, 2023, 39(2): 722185.
|
23 |
孙鹏, 陈晨, 李凤鸣, 等. 基于SPH方法的降落伞展开过程数值研究[J]. 计算机仿真, 2017, 34(8): 89-94.
|
|
SUN P, CHEN C, LI F M, et al. Numerical study of parachute spreading process based on SPH method[J]. Computer Simulation, 2017, 34(8): 89-94 (in Chinese).
|
24 |
CHENG H, CHEN C, LIU X H, et al. Numerical study of parachute inflation process based on smoothed particle hydrodynamics fluid structure interaction method[J]. Journal of Industrial Textiles, 2018, 47(6): 1038-1059.
|
25 |
姚向茹, 余莉, 吴琼. 降落伞稳降阶段的SPH方法数值模拟[J]. 航天返回与遥感, 2016, 37(3): 48-54.
|
|
YAO X R, YU L, WU Q. Numerical simulation of steady-state descent phase of parachute based on SPH method[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(3): 48-54 (in Chinese).
|
26 |
SHABANA A A. An overview of the ANCF approach, justifications for its use, implementation issues, and future research directions[J]. Multibody System Dynamics, 2023, 58(3): 433-477.
|
27 |
OTSUKA K, MAKIHARA K, SUGIYAMA H. Recent advances in the absolute nodal coordinate formulation: Literature review from 2012 to 2020[J]. Journal of Computational and Nonlinear Dynamics, 2022, 17(8): 080803.
|
28 |
LIU F, LIU G, SHU C. Fluid-structure interaction simulation based on immersed boundary-lattice Boltzmann flux solver and absolute nodal coordinate formula[J]. Physics of Fluids, 2020, 32(4): 047109.
|
29 |
HU W, TIAN Q, HU H Y. Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method[J]. Nonlinear Dynamics, 2014, 75(4): 653-671.
|
30 |
KONG W Z, TIAN Q. Dynamics of fluid-filled space multibody systems considering the microgravity effects[J]. Mechanism and Machine Theory, 2020, 148: 103809.
|
31 |
HU W, TIAN Q, HU H Y. Dynamic fracture simulation of flexible multibody systems via coupled finite elements of ANCF and particles of SPH[J]. Nonlinear Dynamics, 2016, 84(4): 2447-2465.
|
32 |
GERSTMAYR J, SHABANA A A. Analysis of thin beams and cables using the absolute nodal co-ordinate formulation[J]. Nonlinear Dynamics, 2006, 45(1): 109-130.
|
33 |
ZHAO J, TIAN Q, HU H Y. Modal analysis of a rotating thin plate via absolute nodal coordinate formulation[J]. Journal of Computational and Nonlinear Dynamics, 2011, 6(4): 1.
|
34 |
刘晓曦. 基于改进核函数的SPH方法及其数值模拟[D]. 哈尔滨: 哈尔滨工程大学, 2023.
|
|
LIU X X. SPH method based on improved kernel function and its numerical simulation[D]. Harbin: Harbin Engineering University, 2023 (in Chinese).
|