1 |
LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1): 200-212.
|
2 |
JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228.
|
3 |
GEROLYMOS G A, SÉNÉCHAL D, VALLET I. Very-high-order WENO schemes[J]. Journal of Computational Physics, 2009, 228(23): 8481-8524.
|
4 |
JOHNSEN E, LARSSON J, BHAGATWALA A V, et al. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[J]. Journal of Computational Physics, 2010, 229(4): 1213-1237.
|
5 |
BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6): 3191-3211.
|
6 |
HENRICK A K, ASLAM T D, POWERS J M. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points[J]. Journal of Computational Physics, 2005, 207(2): 542-567.
|
7 |
ACKER F, DE R BORGES R B, COSTA B. An improved WENO-Z scheme[J]. Journal of Computational Physics, 2016, 313: 726-753.
|
8 |
LUO X, WU S P. An improved WENO-Z+ scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics, 2021, 445: 110608.
|
9 |
FAN P. High order weighted essentially nonoscillatory WENO-η schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2014, 269: 355-385.
|
10 |
刘博, 李诗尧, 陈嘉禹, 等. 基于映射函数的新型五阶WENO格式[J]. 航空学报, 2022, 43(12): 126155.
|
|
LIU B, LI S Y, CHEN J Y, et al. New fifth order WENO scheme based on mapping functions[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126155 (in Chinese).
|
11 |
LELE S K. Compact finite difference schemes with spectral-like resolution[J]. Journal of Computational Physics, 1992, 103(1): 16-42.
|
12 |
DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 22-44.
|
13 |
DENG X G, MAEKAWA H. Compact high-order accurate nonlinear schemes[J]. Journal of Computational Physics, 1997, 130(1): 77-91.
|
14 |
DENG X G, LIU X, MAO M L, et al. Investigation on weighted compact fifth-order nonlinear scheme and applications to complex flow[C]∥ Proceedings of the 17th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2005.
|
15 |
DENG X G, MAO M L, TU G H, et al. Extending weighted compact nonlinear schemes to complex grids with characteristic-based interface conditions[J]. AIAA Journal, 2010, 48(12): 2840-2851.
|
16 |
DENG X G, MIN Y B, MAO M L, et al. Further studies on Geometric Conservation Law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2013, 239: 90-111.
|
17 |
王运涛, 孙岩, 王光学, 等. DLR-F6翼身组合体的高阶精度数值模拟[J]. 航空学报, 2015, 36(9): 2923-2929.
|
|
WANG Y T, SUN Y, WANG G X, et al. High-order accuracy numerical simulation of DLR-F6 wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 2923-2929 (in Chinese).
|
18 |
王运涛, 孙岩, 孟德虹, 等. CRM翼/身/平尾组合体模型高阶精度数值模拟[J]. 航空学报, 2016, 37(12): 3692-3697.
|
|
WANG Y T, SUN Y, MENG D H, et al. High-order precision numerical simulation of CRM wing/body/horizontal tail model[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12): 3692-3697 (in Chinese).
|
19 |
NONOMURA T, FUJII K. Effects of difference scheme type in high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2009, 228(10): 3533-3539.
|
20 |
FU L, HU X Y, ADAMS N A. A family of high-order targeted ENO schemes for compressible-fluid simulations[J]. Journal of Computational Physics, 2016, 305: 333-359.
|
21 |
HAMZEHLOO A, LUSHER D J, LAIZET S, et al. On the performance of WENO/TENO schemes to resolve turbulence in DNS/LES of high-speed compressible flows[J]. International Journal for Numerical Methods in Fluids, 2021, 93(1): 176-196.
|
22 |
DE VANNA F, BALDAN G, PICANO F, et al. Effect of convective schemes in wall-resolved and wall-modeled LES of compressible wall turbulence[J]. Computers & Fluids, 2023, 250: 105710.
|
23 |
FU L. Review of the high-order TENO schemes for compressible gas dynamics and turbulence[J]. Archives of Computational Methods in Engineering, 2023, 30(4): 2493-2526.
|
24 |
HIEJIMA T. A high-order weighted compact nonlinear scheme for compressible flows[J]. Computers & Fluids, 2022, 232: 105199.
|
25 |
ZHANG H B, ZHANG F, XU C G. Towards optimal high-order compact schemes for simulating compressible flows[J]. Applied Mathematics and Computation, 2019, 355: 221-237.
|
26 |
ZHANG H B, ZHANG F, LIU J, et al. A simple extended compact nonlinear scheme with adaptive dissipation control[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 84: 105191.
|
27 |
吴文昌, 马燕凯, 韩省思, 等. 一种光滑型 TENO非线性加权的WCNS格式 [J]. 航空学报, 2024, 45 (8): 129052.
|
|
WU W C, MA Y K, HAN X S, et al. A smooth TENO nonlinear weighting for WCNS scheme[J]. Acta Aeronautica et Astronuatica Sinica, 2024, 45 (8): 129052 (in Chinese).
|
28 |
GARNIER E, MOSSI M, SAGAUT P, et al. On the use of shock-capturing schemes for large-eddy simulation[J]. Journal of Computational Physics, 1999, 153(2): 273-311.
|
29 |
KAMIYA T, ASAHARA M, NONOMURA T. Application of central differencing and low-dissipation weights in a weighted compact nonlinear scheme[J]. International Journal for Numerical Methods in Fluids, 2017, 84(3): 152-180.
|
30 |
HU X Y, WANG Q, ADAMS N A. An adaptive central-upwind weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics, 2010, 229(23): 8952-8965.
|
31 |
FAN P, SHEN Y Q, TIAN B L, et al. A new smoothness indicator for improving the weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics, 2014, 269: 329-354.
|
32 |
WONG M L, LELE S K. High-order localized dissipation weighted compact nonlinear scheme for shock- and interface-capturing in compressible flows[J]. Journal of Computational Physics, 2017, 339: 179-209.
|
33 |
ZHAO G Y, SUN M B, XIE S B, et al. Numerical dissipation control in an adaptive WCNS with a new smoothness indicator[J]. Applied Mathematics and Computation, 2018, 330: 239-253.
|
34 |
PIROZZOLI S. On the spectral properties of shock-capturing schemes[J]. Journal of Computational Physics, 2006, 219(2): 489-497.
|
35 |
赵钟, 何磊, 何先耀. 风雷(PHengLEI)通用CFD软件设计[J]. 计算机工程与科学, 2020, 42(2): 210-219.
|
|
ZHAO Z, HE L, HE X Y. Design of general CFD software PHengLEI[J]. Computer Engineering & Science, 2020, 42(2): 210-219 (in Chinese).
|
36 |
HAN X S, KRAJNOVIĆ S. An efficient very large eddy simulation model for simulation of turbulent flow[J]. International Journal for Numerical Methods in Fluids, 2013, 71(11): 1341-1360.
|
37 |
HAN X S, KRAJNOVIĆ S. Very-large-eddy simulation based on k-ω model[J]. AIAA Journal, 2015, 53(4): 1103-1108.
|
38 |
HAN X S, KRAJNOVIĆ S. Validation of a novel very large eddy simulation method for simulation of turbulent separated flow[J]. International Journal for Numerical Methods in Fluids, 2013, 73(5): 436-461.
|
39 |
MIN Y B, WU W C, ZHANG H D, et al. Self-adaptive turbulence eddy simulation of flow control for drag reduction around a square cylinder with an upstream rod[J]. European Journal of Mechanics-B/Fluids, 2023, 100: 185-201.
|
40 |
MOSER R D, KIM J, MANSOUR N N. Direct numerical simulation of turbulent channel flow up to Reτ=590[J]. Physics of Fluids, 1999, 11(4): 943-945.
|
41 |
WU W C, HAN X S, MIN Y B, et al. Improved self-adaptive turbulence eddy simulation for complex flows and stall prediction using high-order schemes[J]. European Journal of Mechanics- B/Fluids, 2024, 106: 48-64.
|
42 |
JACQUIN L, MOLTON P, DECK S, et al. Experimental study of shock oscillation over a transonic supercritical profile[J]. AIAA Journal, 2009, 47(9): 1985-1994.
|
43 |
CUONG NGUYEN N, TERRANA S, PERAIRE J. Large-eddy simulation of transonic buffet using matrix-free discontinuous Galerkin method[J]. AIAA Journal, 2022, 60(5): 3060-3077.
|