杨超1,2, 邹志诚1, 谢长川1,2(), 安朝1, 胡存佚3
收稿日期:
2024-07-15
修回日期:
2024-09-11
接受日期:
2024-09-18
出版日期:
2024-09-24
发布日期:
2024-09-20
通讯作者:
谢长川
E-mail:xiechangc@buaa.edu.cn
基金资助:
Chao YANG1,2, Zhicheng ZOU1, Changchuan XIE1,2(), Chao AN1, Cunyi HU3
Received:
2024-07-15
Revised:
2024-09-11
Accepted:
2024-09-18
Online:
2024-09-24
Published:
2024-09-20
Contact:
Changchuan XIE
E-mail:xiechangc@buaa.edu.cn
Supported by:
摘要:
以气动弹性计算为代表的多学科耦合计算中,结构变形会带来流体求解域的变形,需要发展一种通用性好、计算效率高、适用性强的动网格技术以满足气动力的求解需求。基于径向基函数(RBF)插值法的动网格技术具有较强的变形网格生成能力,适用于任意类型的变形网格计算,被认为是一种具有较好应用前景的动网格方法。介绍了基于RBF的动网格技术基本理论,分析了RBF方法的基函数与紧支半径选取方案,对基于RBF的动网格技术的加速算法、精度提升方法的研究进展进行了整理,梳理了基于RBF的混合动网格技术。最后对目前气动弹性计算中基于RBF的动网格技术研究现状与发展前景做了简要总结。
中图分类号:
杨超, 邹志诚, 谢长川, 安朝, 胡存佚. RBF动网格技术研究进展及其气动弹性应用[J]. 航空学报, 2025, 46(5): 530945.
Chao YANG, Zhicheng ZOU, Changchuan XIE, Chao AN, Cunyi HU. Research progress of RBF dynamic mesh technology and its application in aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 530945.
1 | 杨超, 吴志刚. 飞行器气动弹性原理[M]. 3版. 北京: 北京航空航天大学出版社, 2024: 1-2. |
YANG C, WU Z G. Aeroelastic principle of aircraft[M]. 3rd ed. Beijing: Beijing University of Aeronautics & Astronautics Press, 2024: 1-2 (in Chinese). | |
2 | 杨超, 吴志刚, 谢长川. 气动弹性设计基础[M]. 3版. 北京: 北京航空航天大学出版社, 2021: 11-14. |
YANG C, WU Z G, XIE C C. Aeroelastic design foundation[M]. 3rd ed. Beijing: Beijing University of Aeronautics & Astronautics Press, 2021: 11-14 (in Chinese). | |
3 | 林言中, 陈兵, 徐旭. 基于径向基函数插值的气动弹性计算方法[J]. 北京航空航天大学学报, 2014, 40(7): 953-958. |
LIN Y Z, CHEN B, XU X. Numerical method of aeroelasticity based on radial basis function interpolation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(7): 953-958 (in Chinese). | |
4 | GUO T Q, LU D X, LU Z L, et al. CFD/CSD-based flutter prediction method for experimental models in a transonic wind tunnel with porous wall[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3100-3111. |
5 | YE K, CHEN S B, YE Z Y. Numerical investigation of nonlinear aeroelastic characteristics of a supersonic drag-reduction spike[J]. Computers & Fluids, 2024, 273: 106201. |
6 | 马砾, 招启军, 赵蒙蒙, 等. 基于CFD/CSD耦合方法的旋翼气动弹性载荷计算分析[J]. 航空学报, 2017, 38(6): 120762. |
MA L, ZHAO Q J, ZHAO M M, et al. Computation analyses of aeroelastic loads of rotor based on CFD/CSD coupling method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120762 (in Chinese). | |
7 | 许云涛, 檀大林, 杨超. 基于CFD/CSD耦合的高速射弹尾拍载荷特性研究[J]. 北京航空航天大学学报, 2023, 49(9): 2539-2546. |
XU Y T, TAN D L, YANG C. Study on tail-slap load characteristics of high-speed projectile based on CFD/CSD coupling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(9): 2539-2546 (in Chinese). | |
8 | TAMURA S, YUMITORI T. Accurate aeroelastic analysis of the wing structure with control surface[C]∥ Proceedings of the AIAA Scitech 2024 Forum. Reston: AIAA, 2024. |
9 | 张伟伟. 基于CFD技术的高效气动弹性分析方法研究[D]. 西安: 西北工业大学, 2006: 50-51. |
ZHANG W W. Research on efficient aeroelastic analysis method based on CFD technology[D]. Xi’an: Northwestern Polytechnical University, 2006: 50-51 (in Chinese). | |
10 | 张兵, 韩景龙. 带旋转修正的弹簧-TFI混合动网格方法[J]. 航空学报, 2011, 32(10): 1815-1823. |
ZHANG B, HAN J L. Spring-TFI hybrid dynamic mesh method with rotation correction[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1815-1823 (in Chinese). | |
11 | 杨超, 杨澜, 谢长川. 大展弦比柔性机翼气动弹性分析中的气动力方法研究进展[J]. 空气动力学学报, 2018, 36(6): 1009-1018. |
YANG C, YANG L, XIE C C. Development of aeodynamic methods in aeroelastic analysis for high aspect ratio flexible wings[J]. Acta Aerodynamica Sinica, 2018, 36(6): 1009-1018 (in Chinese). | |
12 | 杨国伟. 计算气动弹性若干研究进展[J]. 力学进展, 2009, 39(4): 406-420. |
YANG G W. Recent progress on computational aeroelasticity[J]. Advances in Mechanics, 2009, 39(4): 406-420 (in Chinese). | |
13 | DEGAND C, FARHAT C. A three-dimensional torsional spring analogy method for unstructured dynamic meshes[J]. Computers & Structures, 2002, 80(3-4): 305-316. |
14 | STEIN K, TEZDUYAR T, BENNEY R. Mesh moving techniques for fluid-structure interactions with large displacements[J]. Journal of Applied Mechanics, 2003, 70(1): 58-63. |
15 | 陈炎, 曹树良, 梁开洪, 等. 基于温度体模型的动网格生成方法及在流固耦合振动中的应用[J]. 振动与冲击, 2010, 29(4): 1-5, 227. |
CHEN Y, CAO S L, LIANG K H, et al. A new dynamic grids based on temperature analogy and its application in vibration engineering with fluid-solid interaction[J]. Journal of Vibration and Shock, 2010, 29(4): 1-5, 227 (in Chinese). | |
16 | ALLEN C. Automatic structured multiblock mesh generation using robust transfinite interpolation[C]∥18th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2007. |
17 | WITTEVEEN J, BIJL H. Explicit mesh deformation using inverse distance weighting interpolation[C]∥19th AIAA Computational Fluid Dynamics. Reston: AIAA, 2009. |
18 | 肖天航, 昂海松, 仝超. 大幅运动复杂构形扑翼动态网格生成的一种新方法[J]. 航空学报, 2008, 29(1): 41-48. |
XIAO T H, ANG H S, TONG C. A new dynamic mesh generation method for large movements of flapping-wings with complex geometries[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 41-48 (in Chinese). | |
19 | BECKERT A, WENDLAND H. Multivariate interpolation for fluid-structure-interaction problems using radial basis functions[J]. Aerospace Science and Technology, 2001, 5(2): 125-134. |
20 | 周璇, 李水乡, 陈斌. 非结构动网格生成的弹簧-插值联合方法[J]. 航空学报, 2010, 31(7): 1389-1395. |
ZHOU X, LI S X, CHEN B. Spring-interpolation approach for generating unstructured dynamic meshes[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7): 1389-1395 (in Chinese). | |
21 | 郑冠男, 杨国伟. 基于背景网格的混合网格变形方法[J]. 振动工程学报, 2011, 24(5): 473-481. |
ZHENG G N, YANG G W. Hybrid grid deformation method based on background grid[J]. Journal of Vibration Engineering, 2011, 24(5): 473-481 (in Chinese). | |
22 | DE BOER A, VAN DER SCHOOT M S, BIJL H. Mesh deformation based on radial basis function interpolation[J]. Computers & Structures, 2007, 85(11-14): 784-795. |
23 | LI G J, KUMAR JAIMAN R, LIU H Z. Coupled dynamics of steady jet flow control for flexible membrane wings[J]. AIAA Journal, 2024, 62(6): 2264-2281. |
24 | CHWALOWSKI P, STANFORD B, JACOBSON K, et al. Flutter prediction report in support of the high angle working group at the third aeroelastic prediction workshop[C]∥AIAA Scitech 2024 Forum. Reston: AIAA, 2024. |
25 | YE K, YANG M B, QIN L Z, et al. Effects of structural geometric nonlinearities on the transonic aeroelastic characteristics of wing[J]. Aerospace Science and Technology, 2024, 149: 109161. |
26 | SHI Y Y, HE S, CUI G W, et al. Oscillation quenching and physical explanation on freeplay-based aeroelastic airfoil in transonic viscous flow[J]. Chinese Journal of Aeronautics, 2023, 36(10): 124-136. |
27 | 任浩源, 王毅, 王亮, 等. 基于热/力试验的折叠舵连接刚度与颤振分析[J]. 航空学报, 2023, 44(14): 227927. |
REN H Y, WANG Y, WANG L, et al. Connection stiffness and flutter analysis of folding fin based on thermal-mechanical test[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 227927 (in Chinese). | |
28 | 杨澜. 大柔性机翼气动建模方法及气动弹性分析研究[D]. 北京: 北京航空航天大学, 2021: 60-62. |
YANG L. Aerodynamic modeling methodology and aeroelastic analysis of very flexible wings[D]. Beijing: Beihang University, 2021: 60-62 (in Chinese). | |
29 | 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报, 2014, 35(2): 303-319. |
ZHANG W W, GAO C Q, YE Z Y. Research progress on mesh deformation method in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 303-319 (in Chinese). | |
30 | RENDALL T C S, ALLEN C B. Unified fluid-structure interpolation and mesh motion using radial basis functions[J]. International Journal for Numerical Methods in Engineering, 2008, 74(10): 1519-1559. |
31 | 赵奥博, 郑冠男, 黄程德, 等. 地效翼的颤振特性研究[J]. 振动与冲击, 2023, 42(17): 265-274. |
ZHAO A B, ZHENG G N, HUANG C D, et al. Flutter characteristics of ground effect wings[J]. Journal of Vibration and Shock, 2023, 42(17): 265-274 (in Chinese). | |
32 | ESTRUCH O, LEHMKUHL O, BORRELL R, et al. A parallel radial basis function interpolation method for unstructured dynamic meshes[J]. Computers & Fluids, 2013, 80: 44-54. |
33 | FRIGOLETTO B E, FIDKOWSKI K, CESNIK C E. Output-based mesh adaptation for high-order fluid-structure interaction of flexible wings[C]∥Proceedings of the AIAA Scitech 2024 Forum. Reston: AIAA, 2024. |
34 | MASTERS J S, DENNY A, COTHRAN W. Scalable deformation of unstructured computational meshes[C]∥ AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
35 | HUANG C D, LIU W, YANG G W. Numerical studies of static aeroelastic effects on grid fin aerodynamic performances[J]. Chinese Journal of Aeronautics, 2017, 30(4): 1300-1314. |
36 | 苏波, 石启印, 钱若军. 径向基函数应用于流固耦合分析初探[J]. 工程力学, 2013, 30(1): 59-63. |
SU B, SHI Q Y, QIAN R J. Preliminary study on the use of radial basis funcion in fluid-structure interaction analysis[J]. Engineering Mechincs, 2013, 30(1): 59-63 (in Chinese). | |
37 | WENDLAND H. On the smoothness of positive definite and radial functions[J]. Journal of Computational and Applied Mathematics, 1999, 101(1-2): 177-188. |
38 | 林言中, 陈兵, 徐旭. 径向基函数插值方法在动网格技术中的应用[J]. 计算物理, 2012, 29(2): 191-197. |
LIN Y Z, CHEN B, XU X. Radial basis function interpolation in moving mesh technique[J]. Chinese Journal of Computational Physics, 2012, 29(2): 191-197 (in Chinese). | |
39 | HOLGER W. Konstruktion und untersuchung radialer basisfunktionen mit kompaktem trager[D]. Gottingen: University of Gottingen, 1996: 31. |
40 | VAN STEEN F. Mesh deformation using radial basis function interpolation for numerical optimisation of internal flow applications[D]. Delft: Delft University of Technology, 2023: 8. |
41 | GAO X, XU C F, DONG Y D, et al. Efficient and robust parallel mesh motion solver using radial basis functions[J]. Journal of Aerospace Engineering, 2018, 31(3): 04018019. |
42 | MORELLI M, BELLOSTA T, GUARDONE A. Efficient radial basis function mesh deformation methods for aircraft icing[J]. Journal of Computational and Applied Mathematics, 2021, 392: 113492. |
43 | LI K, KOU J Q, ZHANG W W. Aeroelastic reduced-order modeling for efficient static aeroelastic analysis considering geometric nonlinearity[J]. Journal of Fluids and Structures, 2024, 124: 104055. |
44 | HUANG C D, HUANG J, SONG X, et al. Three dimensional aeroelastic analyses considering free-play nonlinearity using computational fluid dynamics/computational structural dynamics coupling[J]. Journal of Sound and Vibration, 2021, 494: 115896. |
45 | ABERGO L, GUARDONE A. Unsteady adjoint optimization in SU2 based on the hybrid harmonic balance-URANS approach[C]∥AIAA Aviation 2023 Forum. Reston: AIAA, 2023. |
46 | 方洪, 禹彩辉, 张星, 等. 基于径向基函数法的网格变形技术研究进展[C]∥2017全国仿真技术学术会议. 2017: 22-27, 59. |
FANG H, YU C H, ZHANG X, et al. Review of mesh deformation technology based on radial basis function[C]∥2017 National Academic Conference on Simulation Technology. 2017: 22-27, 59 (in Chinese). | |
47 | ZHAO Z, MA R, HE L, et al. An efficient large-scale mesh deformation method based on MPI/OpenMP hybrid parallel radial basis function interpolation[J]. Chinese Journal of Aeronautics, 2020, 33(5): 1392-1404. |
48 | 王刚, 雷博琪, 叶正寅. 一种基于径向基函数的非结构混合网格变形技术[J]. 西北工业大学学报, 2011, 29(5): 783-788. |
WANG G, LEI B Q, YE Z Y. An efficient deformation technique for hybrid unstructured grid using radial basis functions[J]. Journal of Northwestern Polytechnical University, 2011, 29(5): 783-788 (in Chinese). | |
49 | RENDALL T, ALLEN C. Efficient mesh motion using radial basis functions with data reduction algorithms[C]∥ 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
50 | RENDALL T C S, ALLEN C B. Reduced surface point selection options for efficient mesh deformation using radial basis functions[J]. Journal of Computational Physics, 2010, 229(8): 2810-2820. |
51 | 魏闯, 杨龙, 李春鹏, 等. ARI_OPT气动优化软件研究进展及应用[J]. 航空学报, 2020, 41(5): 623370. |
WEI C, YANG L, LI C P, et al. Reseach progress and application of ARI-OPT software for aerodynamic shape optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623370 (in Chinese). | |
52 | BERETTA L, MORELLI M C, GUARDONE A, et al. Numerical investigation of three-dimensional ice formation on a wing with leading edge tubercles[C]∥ AIAA Scitech 2022 Forum. Reston: AIAA, 2022. |
53 | LIU S Y, WANG Y B, QIN N, et al. Quantification of airfoil aerodynamic uncertainty due to pressure-sensitive paint thickness[J]. AIAA Journal, 2019, 58(4): 1432-1440. |
54 | 高翔, 廖海翔, 徐传福. 基于支持向量回归的动网格技术研究[J]. 空气动力学学报, 2022, 40(5): 146-157. |
GAO X, LIAO H X, XU C F. Dynamic mesh technology based on support vector regression[J]. Acta Aerodynamica Sinica, 2022, 40(5): 146-157 (in Chinese). | |
55 | RENDALL T, ALLEN C. Parallel efficient mesh motion using radial basis functions with application to multi-bladed rotors[C]∥26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008. |
56 | SU X Y, SHENG C H, ALLEN C. An efficient mesh deformation approach based on radial basis functions in unstructured flow solver[C]∥Proceedings of the 20th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2011. |
57 | WANG G, MIAN H H, YE Z Y, et al. Improved point selection method for hybrid-unstructured mesh deformation using radial basis functions[J]. AIAA Journal, 2014, 53(4): 1016-1025. |
58 | LI H, YE Z Y. Effects of rotational motion on dynamic aeroelasticity of flexible spinning missile with large slenderness ratio[J]. Aerospace Science and Technology, 2019, 94: 105384. |
59 | WANG G, CHEN X, LIU Z K. Mesh deformation on 3D complex configurations using multistep radial basis functions interpolation[J]. Chinese Journal of Aeronautics, 2018, 31(4): 660-671. |
60 | 魏其, 李春娜, 谷良贤, 等. 一种基于径向基函数和峰值选择法的高效网格变形技术[J]. 航空学报, 2016, 37(7): 2156-2169. |
WEI Q, LI C N, GU L X, et al. An efficient mesh deformation method based on radial basis functions and peak-selection method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7): 2156-2169 (in Chinese). | |
61 | STROFYLAS G A, LYGIDAKIS G N, NIKOLOS I K. An agglomeration strategy for accelerating RBF-based mesh deformation[J]. Advances in Engineering Software, 2017, 107: 13-37. |
62 | FANG H, ZHANG H, SHAN F L, et al. Efficient mesh deformation using radial basis functions with a grouping-circular-based greedy algorithm[J]. Journal of Computational Physics, 2021, 433: 110200. |
63 | WANG H D, WANG X D, LIU X Y, et al. Improved radial basis functions mesh deformation based on parallel point selection strategy and incremental LDLT decomposition[J]. Aerospace Science and Technology, 2023, 141: 108522. |
64 | LI C, XU X H, WANG J Y, et al. A parallel multiselection greedy method for the radial basis function-based mesh deformation[J]. International Journal for Numerical Methods in Engineering, 2018, 113(10): 1561-1588. |
65 | 郭中州, 何志强, 赵文文, 等. 高效非结构网格变形与流场插值方法[J]. 航空学报, 2018, 39(12): 122411. |
GUO Z Z, HE Z Q, ZHAO W W, et al. Efficient mesh deformation and flowfield interpolation method for unstructured mesh[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 122411 (in Chinese). | |
66 | BENTLEY J L. Multidimensional binary search trees used for associative searching[J]. Communications of the ACM, 1975, 18(9): 509-517. |
67 | 王海洋. 基于虚拟控制点和径向基函数的网格变形方法研究[D]. 杭州: 杭州电子科技大学, 2023: 18-46. |
WANG H Y. Mesh deformation method based on virtual control points and radial basis functions[D]. Hangzhou: Hangzhou Dianzi University, 2023: 18-46 (in Chinese). | |
68 | XIAO Z F, WANG H Y, XU G. Improved mesh deformation based on radial basis functions[C]∥AIAA Scitech 2023 Forum. Reston: AIAA, 2023. |
69 | MICHLER A K. Aircraft control surface deflection using RBF-based mesh deformation[J]. International Journal for Numerical Methods in Engineering, 2011, 88(10): 986-1007. |
70 | 谢亮, 徐敏, 安效民, 等. 基于径向基函数的网格变形及非线性气动弹性时域仿真研究[J]. 航空学报, 2013, 34(7): 1501-1511. |
XIE L, XU M, AN X M, et al. Research of mesh deforming method based on radial basis functions and nonlinear aeroelastic simulation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1501-1511 (in Chinese). | |
71 | 谢亮, 徐敏, 张斌, 等. 基于径向基函数的高效网格变形算法研究[J]. 振动与冲击, 2013, 32(10): 141-145. |
XIE L, XU M, ZHANG B, et al. Space points reduction in grid deforming method based on radial basis functions[J]. Journal of Vibration and Shock, 2013, 32(10): 141-145 (in Chinese). | |
72 | XIE L, LIU H. Efficient mesh motion using radial basis functions with volume grid points reduction algorithm[J]. Journal of Computational Physics, 2017, 348: 401-415. |
73 | ABERGO L, MORELLI M, GUARDONE A. Aerodynamic optimization based on a discrete adjoint framework and radial basis function mesh deformation in SU2[C]∥ AIAA Aviation 2021 Forum. Reston: AIAA, 2021. |
74 | ABERGO L, MORELLI M, GUARDONE A. Aerodynamic shape optimization based on discrete adjoint and RBF[J]. Journal of Computational Physics, 2023, 477: 111951. |
75 | XIE L, KANG Z C, HONG H F, et al. Local mesh deformation using a dual-restricted radial basis functions method[J]. Aerospace Science and Technology, 2022, 130: 107940. |
76 | LIU W, HUANG C D, YANG G W. Time efficient aeroelastic simulations based on radial basis functions[J]. Journal of Computational Physics, 2017, 330: 810-827. |
77 | SELIM M M, KOOMULLIL R P, SHEHATA A S. Incremental approach for radial basis functions mesh deformation with greedy algorithm[J]. Journal of Computational Physics, 2017, 340: 556-574. |
78 | FANG H, HU Y K, YU C H, et al. An efficient radial basis functions mesh deformation with greedy algorithm based on recurrence Choleskey decomposition and parallel computing[J]. Journal of Computational Physics, 2019, 377: 183-199. |
79 | LIU J, FANG H, SHAN F L, et al. An improved peak-selection algorithm using block-based recurrence Cholesky decomposition for mesh deformation[J]. AIP Advances, 2021, 11(9): 095004. |
80 | COULIER P, DARVE E. Efficient mesh deformation based on radial basis function interpolation by means of the inverse fast multipole method[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 308: 286-309. |
81 | HACKBUSCH W, KHOROMSKIJ B N, KRIEMANN R. Hierarchical matrices based on a weak admissibility criterion[J]. Computing, 2004, 73(3): 207-243. |
82 | 高翔. 非结构CFD并行网格变形算法及其应用[D]. 长沙: 国防科技大学, 2018: 12-13. |
GAO X. Parallel unstructured mesh deformation algorithms and their applications in CFD[D]. Changsha: National University of Defense Technology, 2018: 12-13 (in Chinese). | |
83 | RENDALL T, ALLEN C. Parallel efficient mesh motion using radial basis functions with application to multi-bladed rotors[C]∥26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008. |
84 | GILLEBAART T, BLOM D S, VAN ZUIJLEN A H, et al. Adaptive radial basis function mesh deformation using data reduction[J]. Journal of Computational Physics, 2016, 321: 997-1025. |
85 | FLOATER M S, ISKE A. Multistep scattered data interpolation using compactly supported radial basis functions[J]. Journal of Computational and Applied Mathematics, 1996, 73(1-2): 65-78. |
86 | KEDWARD L, ALLEN C B, RENDALL T C S. Efficient and exact mesh deformation using multiscale RBF interpolation[J]. Journal of Computational Physics, 2017, 345: 732-751. |
87 | NIU J P, LEI J M, HE J D. Radial basis function mesh deformation based on dynamic control points[J]. Aerospace Science and Technology, 2017, 64: 122-132. |
88 | 曾铮, 王刚, 叶正寅. RBF整体网格变形技术与多体轨迹仿真[J]. 空气动力学学报, 2015, 33(2): 170-177. |
ZENG Z, WANG G, YE Z Y. Enhanced RBF mesh deformaion method and multi-body trajectory simulation[J]. Acta Aerodynamica Sinica, 2015, 33(2): 170-177 (in Chinese). | |
89 | WANG G, CHEN X, XING Y, et al. Multi-body separation simulation with an improved general mesh deformation method[J]. Aerospace Science and Technology, 2017, 71: 763-771. |
90 | FIELD D A. Laplacian smoothing and Delaunay triangulations[J]. Communications in Applied Numerical Methods, 1988, 4(6): 709-712. |
91 | 路宽, 宋文萍, 郭恒博, 等. 基于空间嵌套径向基函数的高效并行网格变形方法[J]. 航空学报, 2023, 45(16): 129433. |
LU K, SONG W P, GUO H B, et al. An efficient parallel mesh deformation technique based on spatially-nested radial basis functions[J]. Acta Aeronautica et Astronautica Sinica, 2023, 45(16): 129433 (in Chinese). | |
92 | GAITONDE A, FIDDES S. A moving mesh system for the calculation of unsteady flows[C]∥Proceedings of the 31st Aerospace Sciences Meeting. Reston: AIAA, 1993. |
93 | 孙岩, 邓小刚, 王运涛, 等. RBF_TFI结构动网格技术在风洞静气动弹性修正中的应用[J]. 工程力学, 2014, 31(10): 228-233. |
SUN Y, DENG XG, WANG Y T, et al. Application of structural dynamic grid method based on RBF_TFI on wind tunnel static aeroelastic modification[J]. Engineering Mechanics, 2014, 31(10): 228-233 (in Chinese). | |
94 | DING L, LU Z L, GUO T Q. An efficient dynamic mesh generation method for complex multi-block structured grid[J]. Advances in Applied Mathematics and Mechanics, 2014, 6(1): 120-134. |
95 | 王运涛, 孟德虹, 孙岩, 等. 超大规模气动弹性数值模拟软件研制(2017)[J]. 空气动力学学报, 2018, 36(6): 1019-1026. |
WANG Y T, MENG D H, SUN Y, et al. Software development of ultra-scale numerical simulaiton for aero-elastic problem (2017)[J]. Acta Aerodynamics Sinica, 2018, 36(6): 1019-1026 (in Chinese). | |
96 | 杨起, 刘伟, 杨小亮, 等. 三角翼机翼摇滚主动控制多学科耦合数值模拟[J]. 航空学报, 2021, 42(12): 124685. |
YANG Q, LIU W, YANG X L, et al. Multidisplinary interactions numerical simulation for active control of delta wing rock[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 124685 (in Chinese). | |
97 | 周铸, 黄江涛, 高正红, 等. 民用飞机气动外形数值优化设计面临的挑战与展望[J]. 航空学报, 2019, 40(1): 522370. |
ZHOU Z, HUANG J T, GAO Z H, et al. Challenges and prospects of numerical optimization design for large civil aircraft aerodynamic shape[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522370 (in Chinese). | |
98 | 张淼, 刘铁军, 马涂亮, 等. 基于CFD方法的大型客机高速气动设计[J]. 航空学报, 2016, 37(1): 244-254. |
ZHANG M, LIU T J, MA T L, et al. High speed aerodynamic design of large civil transporter based on CFD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 244-254 (in Chinese). | |
99 | 刘学强, 李青, 柴建忠, 等. 一种新的动网格方法及其应用[J]. 航空学报, 2008, 29(4): 817-822. |
LIU X Q, LI Q, CHAI J Z, et al. A new dynamic grid algrithm and its application[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 817-822 (in Chinese). | |
100 | 孙岩, 邓小刚, 王光学, 等. 基于径向基函数改进的Delaunay图映射动网格方法[J]. 航空学报, 2014, 35(3): 727-735. |
SUN Y, DENG X G, WANG G X, et al. Improvement on delaunay graph mapping dynamic grid method based on radial basis functions[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 727-735 (in Chinese). | |
101 | 孙岩, 孟德虹, 王运涛, 等. 基于径向基函数与混合背景网格的动态网格变形方法[J]. 航空学报, 2016, 37(5): 1462-1472. |
SUN Y, MENG D H, WANG Y T, et al. Dynamic grid deformation method based on radial basis function and hybrid background grid[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5): 1462-1472 (in Chinese). | |
102 | 孙岩, 江盟, 孟德虹, 等. 国家数值风洞工程结构网格变形程序SGDP V1.0开发与应用[J]. 空气动力学学报, 2020, 38(4): 668-676. |
SUN Y, JIANG M, MENG D H, et al. Development and application of structured grid deformation program SGDP V1.0 in national numerical windtunnel project[J]. Acta Aerodynamica Sinica, 2020, 38(4): 668-676 (in Chinese). | |
103 | 孙岩, 王昊, 江盟, 等. NNW-FSI软件静气动弹性耦合加速策略设计与实现[J]. 航空学报, 2021, 42(9): 625738. |
SUN Y, WANG H, JIANG M, et al. Design and implementation of coupling acceleration strategy in static aeroelastic module of NNW-FSI software[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625738 (in Chinese). | |
104 | 郭秋亭, 孙岩, 郭正, 等. 风洞试验雷诺数/静气动弹性效应分离方法[J]. 航空学报, 2022, 43(11): 526312. |
GUO Q T, SUN Y, GUO Z, et al. Separation method for Reynolds number/static aeroelastic coupling effect in wind tunnel test[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 526312 (in Chinese). | |
105 | 黄江涛, 高正红, 白俊强, 等. RBF 径向基函数与Delaunay图映射技术在飞行器型架外形设计中应用研究[J]. 空气动力学学报, 2014, 32(3): 328-333. |
HUANG J T, GAO Z H, BAI J Q, et al. Aircraft jig shape deisign based on radial basis functions and Delaunay graphic mapping[J]. Acta Aerodynamica Sinica, 2014, 32(3): 328-333 (in Chinese). | |
106 | WANG Y B, QIN N, ZHAO N. Delaunay graph and radial basis function for fast quality mesh deformation[J]. Journal of Computational Physics, 2015, 294: 149-172. |
107 | 王昊达, 刘南, 张颖, 等. 基于径向基函数和Delaunay图映射的高效高鲁棒性的非结构网格变形方法[J]. 气体物理, 2023, 8(6): 41-54. |
WANG H D, LIU N, ZHANG Y, et al. Efficient and robust unstructured grid deformation method based on radial basis function and Delaunay graph mapping[J]. Physics of Gases, 2023, 8(6): 41-54 (in Chinese). | |
108 | LEFRANÇOIS E. A simple mesh deformation technique for fluid-structure interaction based on a submesh approach[J]. International Journal for Numerical Methods in Engineering, 2008, 75(9): 1085-1101. |
109 | LIU Y, GUO Z, LIU J. RBFs-MSA hybrid method for mesh deformation[J]. Chinese Journal of Aeronautics, 2012, 25(4): 500-507. |
110 | FANG H, GONG C Y, YU C H, et al. Efficient mesh deformation based on Cartesian background mesh[J]. Computers & Mathematics with Applications, 2017, 73(1): 71-86. |
111 | TANG H, ZHENG G N, ZHANG Y C. Investigation of radial basis function dynamic mesh method with rotation correction based on adaptive background mesh[J]. Computers & Fluids, 2024, 276: 106264. |
112 | LYRIO J A A, RADE D A, AZEVEDO J A L F. High-fidelity fluid-structure interaction applied to static aeroelasticity in transonic flows[J]. Aerospace Science and Technology, 2024, 153: 109477. |
113 | AUBERT S, MASTRIPPOLITO F, RENDU Q, et al. Planar slip condition for mesh morphing using radial basis functions[J]. Procedia Engineering, 2017, 203: 349-361. |
114 | LIU X Y, WANG H, ZHAO Z, et al. Gridder-HO: rapid and efficient parallel software for high-order curvilinear mesh generation[J]. Advances in Engineering Software, 2024, 197: 103739. |
115 | GAGLIARDI F, GIANNAKOGLOU K C. A two-step radial basis function-based CFD mesh displacement tool[J]. Advances in Engineering Software, 2019, 128: 86-97. |
[1] | 万志强, 张珊珊, 王晓喆, 马靓, 许翱, 吴志刚, 杨超. 弹性飞机机动载荷分析与减缓技术综述[J]. 航空学报, 2025, 46(3): 30279-030279. |
[2] | 安朝, 赵睿, 谢长川, 杨超. 大柔性机翼几何非线性结构降阶模型与气动弹性分析[J]. 航空学报, 2024, 45(S1): 730569-730569. |
[3] | 高天贺, 田阔, 黄蕾, 张澍, 李增聪. 数据驱动的曲面构件形状⁃拓扑协同优化方法[J]. 航空学报, 2024, 45(2): 428806-428806. |
[4] | 王华龙, 张夏阳, 赵国庆, 招启军, 马砾. 基于CFD/CSD耦合的TEF旋翼气弹特性高精度模拟[J]. 航空学报, 2024, 45(18): 229904-229904. |
[5] | 汪松柏, 郝玉扬, 吴亚东, 陈勇, 余华蔚, 杜林. 航空发动机压气机旋转不稳定现象研究进展[J]. 航空学报, 2024, 45(16): 29851-029851. |
[6] | 路宽, 宋文萍, 郭恒博, 叶坤, 王跃, 韩忠华. 基于空间嵌套径向基函数的高效并行网格变形方法[J]. 航空学报, 2024, 45(15): 129433-129433. |
[7] | 卜雪琴, 黄平, 林贵平, 楼燕霞. 多步法冰晶积冰数值模拟[J]. 航空学报, 2024, 45(14): 129308-129308. |
[8] | 张程, 任浩源, 史泰龙, 戴雯迪. 含非线性连接的折叠舵全时域多学科耦合分析方法及应用[J]. 航空学报, 2023, 44(S2): 729461-729461. |
[9] | 沈笑云, 张硕, 张思远. 终端区航空器三维实时监视系统仿真[J]. 航空学报, 2023, 44(S1): 727598-727598. |
[10] | 陈浩宇, 王彬文, 宋巧治, 李晓东. 热颤振地面模拟试验技术[J]. 航空学报, 2023, 44(8): 227295-227295. |
[11] | 喻世杰, 周兴华, 黄锐. 变弯度机翼参数化气动弹性建模与颤振特性分析[J]. 航空学报, 2023, 44(8): 227346-227346. |
[12] | 王培涵, 吴志刚, 杨超, 孙晓旭. 一种适用于弹性飞机飞行仿真的补丁方法[J]. 航空学报, 2023, 44(6): 127038-127038. |
[13] | 刘为佳, 李映坤, 陈雄, 李春雷. 基于流固耦合的激波/边界层干扰作用下壁板颤振特性[J]. 航空学报, 2023, 44(6): 127085-127085. |
[14] | 王梓伊, 张伟伟, 刘磊, 杨肖峰. 适用于复杂流动的热气动弹性降阶建模方法[J]. 航空学报, 2023, 44(4): 126807-126807. |
[15] | 崔玉红, 徐艺哲, 吕凡熹, 赵飞, 张宇佳, 孙佳濛, 左光. 临近空间高超声速飞行器武器投放影响因素[J]. 航空学报, 2023, 44(24): 128539-128539. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学