1 |
BENDIKSEN O O. Review of unsteady transonic aerodynamics: Theory and applications[J]. Progress in Aerospace Sciences, 2011, 47(2): 135-167.
|
2 |
LIU Y L, ZHANG W W. Accuracy preserving limiter for the high-order finite volume method on unstructured grids[J]. Computers & Fluids, 2017, 149: 88-99.
|
3 |
YUAN R F, ZHONG C W, ZHANG H. An immersed-boundary method based on the gas kinetic BGK scheme for incompressible viscous flow[J]. Journal of Computational Physics, 2015, 296: 184-208.
|
4 |
SITARAMAN J, BAEDER J D. Field velocity approach and geometric conservation law for unsteady flow simulations[J]. AIAA Journal, 2006, 44(9): 2084-2094.
|
5 |
HAN Z H, GÖRTZ S. Alternative cokriging method for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(5): 1205-1210.
|
6 |
LIU J, SONG W P, HAN Z H, et al. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models[J]. Structural and Multidisciplinary Optimization, 2017, 55(3): 925-943.
|
7 |
党铁红. NASA超临界翼型的发展[J]. 民用飞机设计与研究, 2005(2): 29-封三.
|
|
DANG T H. Development of NASA supercritical airfoils [J]. Civil Aircraft Design & Research, 2005(2): 29-Inside Back Cover(in Chinese).
|
8 |
张伟伟, 高传强, 叶正寅. 复杂跨声速气动弹性现象及其机理分析[J]. 科学通报, 2018, 63(12): 1095-1110.
|
|
ZHANG W W, GAO C Q, YE Z Y. The complexity and mechanism of transonic aeroelastic problems[J]. Chinese Science Bulletin, 2018, 63(12): 1095-1110 (in Chinese).
|
9 |
DOWELL E H, COX D, CURTISS H C, et al. A modern course in aeroelasticity[M]. New York: Kluwer Academic Pub, 2004.
|
10 |
SILVA W A, CHWALOWSKI P, PERRY B III. Evaluation of linear, inviscid, viscous, and reduced-order modelling aeroelastic solutions of the AGARD 445.6 wing using root locus analysis[J]. International Journal of Computational Fluid Dynamics, 2014, 28(3-4): 122-139.
|
11 |
HE S, YANG Z C, GU Y S. Limit cycle oscillation behavior of transonic control surface buzz considering free-play nonlinearity[J]. Journal of Fluids and Structures, 2016, 61: 431-449.
|
12 |
胡国才, 王允良, 刘书岩, 等. 飞机亚跨声速飞行操纵特性分析 [J]. 飞行力学, 2016, 34(4): 5-9.
|
|
HU G C, WANG Y L, LIU S Y, et al. Analysis of aircraft subsonic and transonic flight control characteristics [J]. Flight Dynamics, 2016, 34(4): 5-9 (in Chinese).
|
13 |
ROOHANI H, SKEWS B W. The influence of acceleration and deceleration on shock wave movement on and around aerofoils in transonic flight[J]. Shock Waves, 2009, 19(4): 297-305.
|
14 |
ROOHANI H, SKEWS B W. Unsteady aerodynamic effects experienced by aerofoils during acceleration and retardation[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2008, 222(5): 631-636.
|
15 |
ROOHANI H, SKEWS B W. Effect of acceleration on shock-wave dynamics of aerofoils during transonic flight[C]∥Shock Waves. Berlin: Springer, 2009: 1401-1406.
|
16 |
庞川博, 蒋胜矩, 赵超. 基于数值虚拟飞行的自旋尾翼鸭式布局弹箭动态气动特性研究 [J]. 弹箭与制导学报, 2021, 41(2): 101-110.
|
|
PANG C B, JIANG S J, ZHAO C. Research on dynamic characteristics of canard missiles with a free-spinning tail using numerical virtual flight technology [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2021, 41(2): 101-110 (in Chinese).
|
17 |
梁益铭, 李广宁, 徐敏. 基于机器学习的智能控制数值虚拟飞行方法[J]. 航空学报, 2023, 44(17): 128098.
|
|
LIANG Y M, LI G N, XU M. Method for numerical virtual flight with intelligent control based on machine learning[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 128098 (in Chinese).
|
18 |
黄宇, 阎超, 席柯, 等. 基于数值虚拟飞行技术的飞行器动态特性分析[J]. 航空学报, 2016, 37(8): 2525-2538.
|
|
HUANG Y, YAN C, XI K, et al. Analysis of flying vehicle’s dynamic characteristics based on numerical virtual flight technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2525-2538 (in Chinese).
|
19 |
BENEK J, STEGER J, DOUGHERTY F C. A flexible grid embedding technique with application to the Euler equations[C]∥6th Computational Fluid Dynamics Conference Danvers. Reston: AIAA, 1983.
|
20 |
罗炯, 李志宏, 陈科, 等. 基于嵌套网格变几何轴对称进气道非定常数值模拟[J]. 航空学报, 2022, 43(12): 627028.
|
|
LUO J, LI Z H, CHEN K, et al. Unsteady numerical simulation of variable geometry axisymmetric inlet based on overset grid[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 627028 (in Chinese).
|
21 |
周伟. 基于嵌套网格的内埋物单侧投放影响研究 [J]. 飞行力学, 2023, 41(5): 30-6+51.
|
|
ZHOU W. Research on the influence of unilateral store separation from internal bay based on embedded grid [J]. Flight Dynamics, 2023, 41(5): 30-6+51 (in Chinese).
|
22 |
严晓雪, 牛健平, 许云涛, 等. 基于多面体重叠网格的多体分离计算分析[J]. 气体物理, 2024, 9(1): 36-44.
|
|
YAN X X, NIU J P, XU Y T, et al. Numerical research on store separation based on polyhedral overset mesh[J]. Physics of Gases, 2024, 9(1): 36-44 (in Chinese).
|
23 |
宋威, 艾邦成. 多体分离动力学研究进展[J]. 航空学报, 2022, 43(9): 025950.
|
|
SONG W, AI B C. Multibody separation dynamics: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 025950 (in Chinese).
|
24 |
艾邦成, 宋威, 董垒, 等. 内埋武器机弹分离相容性研究进展综述 [J]. 航空学报, 2020, 41(10): 023809.
|
|
AI B C, SONG W, DONG L, et al. Review of aircraft-store separation compatibility of internal weapons [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 023809 (in Chinese).
|
25 |
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
|
26 |
曾宇, 汪洪波, 孙明波, 等. SST湍流模型改进研究综述[J]. 航空学报, 2023, 44(9): 027411.
|
|
ZENG Y, WANG H B, SUN M B, et al. SST turbulence model improvements: Review[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 027411 (in Chinese).
|
27 |
李广宁. 三维N-S方程数值求解及S-A湍流模型应用研究[D]. 西安: 西北工业大学, 2006: 51-53.
|
|
LI G N. Numerical solution of three-dimensional N-S equation and application of S-a turbulence model[D]. Xi’an: Northwestern Polytechnical University, 2006: 51-53 (in Chinese) .
|
28 |
李广宁. 全机实用外形绕流Navier-Stokes方程数值模拟及其软件开发研究 [D].西安:西北工业大学, 2010: 107-108.
|
|
LI G N. Numerical simulation of Navier-Stokes equations for full-machine practical profile winding and its software development study[D]. Xi’an: Northwestern Polytechnical University, 2010: 107-108 (in Chinese).
|
29 |
邸洪亮, 陈亮. 高机动无人机机体结构疲劳寿命分析方法研究[J]. 航空科学技术, 2022, 33(6): 41-45.
|
|
DI H L, CHEN L. Study on fatigue life analysis method of high mobility UAV body structure[J]. Aeronautical Science & Technology, 2022, 33(6): 41-45 (in Chinese).
|