[1] SHIN J. The NASA aviation safety program:Over-view[C]//Proceedings of ASME Conference on ASME Turbo Expo 2000:Power for Land, Sea, and Air. Washington, D.C.:ASME, 2000:2000-GT-0660. [2] FAA, EUROCONTROL. ATM Safety techniques and toolbox safety action Plan-15[M]. Washington, D.C.:FAA, 2007. [3] DEZFULI H, BENJAMIN A, EVERETT C, et al. NASA system safety handbook volume 1:System safety framework and concepts for implementation:NASA/SP-2010-580[R]. Washington, D.C.:NASA, 2010 [4] DEZFULI H, BENJAMIN A, EVERETT C, et al. NASA system safety handbook volume 2:System safety concepts, guidelines, and implementation examples:NASA/SP-2014-612[R]. Washington, D.C.:NASA, 2014. [5] GROEN F, EVERETT C, HALL A, et al. NASA accident precursor analysis handbook:NASA/SP-2011-3423[R]. Washington, D.C.:NASA, 2011. [6] DEZFULI H, STAMATELATOS M, MAGGIO G, et al. NASA risk-informed decision making handbook:NASA/SP-2010-576[R]. Washington, D.C.:NASA, 2010. [7] XU X D, ULREY M L, BROWN J A, et al. Safety sufficiency for NextGen-Assessment of selected existing safety methods, tools, processes, and regulations:NASA/CR-2013-217801[R]. Washington, D.C.:NASA, 2013. [8] HUNTER G W, ROSS R W, BERGER D E, et al. A concept of operations for an integrated vehicle health assurance system:NASA/TM-2013-217825[R]. Washington, D.C.:NASA, 2013. [9] 曾宪昂, 蒲利东, 李俊杰, 等. 基于超静定配平的机动载荷控制风洞试验[J]. 航空学报, 2017, 38(5):120596. ZENG X A, PU L D, LI J J, et al. Wind-tunnel test of maneuver load control based overdetermined trim[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5):120596(in Chinese). [10] 张海涛, 余建虎, 李志蕊, 等. T型尾翼布局的垂尾载荷测量技术[J]. 航空学报, 2019, 40(3):122074. ZHANG H T, YU J H, LI Z R, et al. Measuring technology for vertical fin load of T-shaped empennage layout[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):122074(in Chinese). [11] 赵燕. 基于遗传算法与评估模型的飞行载荷实测研究[J]. 航空学报, 2014, 35(9):2506-2512. ZHAO Y. Flight load measurement based on genetic algorithm and evaluating model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2506-2512(in Chinese). [12] 阎楚良, 高镇同. 飞机高置信度中值随机疲劳载荷谱的编制原理[J]. 航空学报, 2000, 21(2):118-123. YAN C L, GAO Z T. Compilation theory of median stochastic fatigue load spectrum with high confidence level for airplane[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(2):118-123. [13] JYLHÄ J, RUOTSALAINEN M, SALONEN T, et al. Towards automated flight-maneuver-specific fatigue analysis[C]//ICAF 2009 Bridging the Gap between Theory and Operational Practice. Dordrecht:Springer Netherlands, 2009:1121-1134. [14] LESKI A, REYMER P, KURDELSKI M. Development of load spectrum for full scale fatigue test of a trainer aircraft[C]//ICAF 2011 Structural Integrity:Influence of Efficiency and Green Imperatives. Dordrecht:Springer Netherlands, 2011:573-584. [15] REYMER P, LESKI A. Flight loads acquisition for PZL-130 OrLik TCII full scale fatigue test[J]. Fatigue of Aircraft Structures, 2011(3):78-85. [16] 孙建华, 蘧时红. 飞行载荷参数识别方法研究[J]. 航空学报, 1994, 15(1):109-112. SUN J H, QU S H. A study on a parametric identification method of flight load[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(1):109-112(in Chinese). [17] KANEKO H, FURUKAWA T. Operational loads regression equation development for advanced fighter aircraft[C]//24th International Congress of the Aeronautical Sciences. Bonn:ICAS, 2004:1-9. [18] 曹良秋, 舒成辉. 基于微分载荷模型的飞行载荷参数辨识方法[J]. 飞行力学, 2013, 31(1):69-71. CAO L Q, SHU C H. A method on flight load identification based on differential load model[J]. Flight Dynamics, 2013, 31(1):69-71(in Chinese). [19] 何发东, 舒成辉. 贝叶斯正则化BP网络在机翼载荷分析中的应用[J]. 飞行力学, 2009, 27(4):85-88. HE F D, SHU C H. Application of BP neural networks based on Bayesian regularization to aircraft wing loads analysis[J]. Flight Dynamics, 2009, 27(4):85-88(in Chinese). [20] ALLEN M J, DIBLEY R P. Modeling aircraft wing loads from flight data using neural networks[J]. SAE Transactions, 2003, 112(1):512-520. [21] 张夏阳, 黄其青, 殷之平, 等. 基于GA-ELM的飞行载荷参数识别[J]. 航空工程进展, 2014, 5(4):497-501. ZHANG X Y, HUANG Q Q, YIN Z P, et al. Establishing a parametric flight loads identification method with GA-ELM model[J]. Advances in Aeronautical Science and Engineering, 2014, 5(4):497-501(in Chinese). [22] 曹善成, 宋笔锋, 殷之平, 等. 基于支持向量机回归的飞行载荷参数识别研究[J]. 西北工业大学学报, 2013, 31(4):535-539. CAO S C, SONG B F, YIN Z P, et al. Establishing a flight load parameter identification model with support vector machine regression[J]. Journal of Northwestern Polytechnical University, 2013, 31(4):535-539(in Chinese). [23] 赵燕. 基于遗传算法与评估模型的飞行载荷实测研究[J]. 航空学报, 2014, 35(9):2506-2512. ZHAO Y. Flight load measurement based on genetic algorithm and evaluating model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2506-2512(in Chinese). [24] 熊峻江. 飞行器结构疲劳与寿命设计[M]. 北京:北京航空航天大学出版社, 2004. XIONG J J. Fatigue life design for aircraft structure[M]. Beijing:Beihang University Press, 2004(in Chinese). [25] 中国人民解放军空军装备部综合计划部. 军用飞机结构强度规范第10部分:飞行试验:GJB 67.10A-2008[S]. 北京:总装备部军标出版发行部, 2008. Comprehensive Planning Department, Reserve Department of PLA Air Force. Military airplane structural strength specification Part 10:Flight tests:GJB 67.10A-2008[S]. Beijing:General Equipment Department Military Standard Press, 2008(in Chinese). |