[1] MCKOWN S, SHEN Y, BROOKES W K. The quasi-static and blast loading response of lattice structures[J]. International Journal of Impact Engineering, 2008, 35(8):795-810. [2] XUE Z, HUTCHINSON J W. Preliminary assessment of sandwich plates subject to blast loads[J]. International Journal of Mechanical Sciences, 2003, 45(4):687-705. [3] 易建坤,马翰宇,朱建生. 点阵金属夹芯结构抗爆炸冲击问题研究的综述[J]. 兵器材料科学与工程, 2014, 37(2):116-120. YI J K, MA H Y, ZHU J S. Review of explosion and shock wave resistance of metallic lattice sandwich structure[J]. Ordnance Material Science and Engineering, 2014, 37(2):116-120(in Chinese). [4] 陈继伟. 轻质点阵夹芯板在民用飞机上的应用分析[J]. 科技视界, 2018, 245(23):69-70. CHEN J W. Application of lattice core sandwich plates on civil aircraft[J]. Science & Technology Vision, 2018, 245(23):69-70(in Chinese). [5] 高航, 彭灿, 王宣平. 航空增材制造复杂结构件表面光整加工技术研究及进展[J]. 航空制造技术, 2019, 62(9):14-22. GAO H, PENG C, WANG X P. Research progress on surface finishing technology of aeronautical complex structural parts manufactured by additive manufacturing[J] Aeronautical Manufacturing Technology, 2019, 62(9):14-22(in Chinese). [6] CALIGNANO F, MANFREDI D, AMBROSIO E P. Overview on additive manufacturing technologies[J]. Proceedings of the IEEE, 2017, 105(4):593-612. [7] NAGESHA B K, DHINAKARAN V, SHREE M V. Review on characterization and impacts of the lattice structure in additive manufacturing[J]. Materials Today:Proceedings, 2020, 21(1):916-919. [8] PLOCHER J, PANESAR A. Review on design and structural optimisation in additive manufacturing:Towards next-generation lightweight structures[J]. Materials & Design, 2019,183:1-20. [9] HASAN R. Progressive collapse of titanium alloy micro-lattice structures manufactured using selective laser melting[D]. Liverpool:University of Liverpool, 2013:165-184. [10] BRENNE F, NIENDORF T, MAIER H J. Additively manufactured cellular structures:Impact of micro-structure and local strains on the monotonic and cyclic behavior under uniaxial and bending load[J]. Journal of Materials Processing Technology, 2013, 213:1558-1564 [11] MINES R A W, TSOPANOS S, SHEN Y. Drop weight impact behaviour of sandwich panels with metallic micro lattice cores[J]. International Journal of Impact Engineering, 2013, 60:120-132. [12] SHEN Y, CANTWELL W J, MINES R A W. The properties of lattice structures manufactured using selective laser melting[J]. Advanced Materials Research, 2012, 445:386-391. [13] HASAN R, MINES R A W, SHEN E. Comparison on compressive behaviour of aluminum honeycomb and titanium alloy micro lattice blocks[J]. Key Engineering Materials, 2011, 462-463:213-218. [14] HUNDLEY J M, CLOUGH E C, JACOBSEN A J. The low velocity impact response of sandwich panels with lattice core reinforcement[J]. International Journal of Impact Engineering, 2015, 84:64-77. [15] 吴彦霖. 基于SLM制备的钛合金三维点阵结构的力学性能研究[D]. 重庆:重庆大学, 2016:23-36. WU Y L. An investigation into the mechanical properties of Ti6Al4V lattice structures manufactured using selective laser melting[D]. Chongqing:Chongqing University, 2016:23-36(in Chinese). [16] 郑权, 冀宾, 李昊, 等. 基于增材制造的多层金字塔点阵夹芯板抗压缩性能[J]. 航空材料学报, 2018, 38(3):81-86. ZHENG Q, JI B, LI H, et al. Compressive behavior of sandwich panels with multilayer pyramidal truss cores by additive manufacturing[J]. Journal of Aeronautical materials. 2018, 38(3):81-86(in Chinese). [17] 张弥, 王晓东, 苏亚东. 钛合金点阵夹芯结构弯曲性能[J]. 中国有色金属学报, 2018, 28(3):457-464. ZHANG M, WANG X D, SU Y D. Bending behavior of titanium truss core sandwich structure[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(3):457-464(in Chinese). [18] 冯丽佳. 铝合金金字塔点阵夹芯结构的制备与力学性能研究[D]. 哈尔滨:哈尔滨工业大学, 2012:31-45 FENG L J. Fabrication and mechanical analysis of aluminum pyramidal truss sandwich panels[D]. Harbin:Harbin Institute of Technology, 2012:31-45(in Chinese). [19] 《中国航空材料手册》编委会.中国航空材料手册.第四卷,钛合金、铜合金[M]. 北京:中国标准出版社, 2001:104-131. Editorial Board of China Aviation Materials Manual. China aviation materials manual. Volume IV, titanium and copper alloys[M]. Beijing:Standards Press of China, 2001:104-131(in Chinese). [20] 惠旭龙, 牟让科, 白春玉. TC4钛合金动态力学性能及本构模型研究[J]. 振动与冲击, 2016, 35(22):161-168. HUI X L, MU R K, BAI C Y. Dynamic mechanical property and constitutive model for TC4 titanium alloy[J]. Journal of Vibration and Shock 2016, 35(22):161-168(in Chinese). [21] 李云飞, 曾祥国, 廖异, 等. 基于修正Johnson-Cook模型的钛合金热黏塑性动态本构关系及有限元模拟[J]. 中国有色金属学报, 2017, 27(7):1419-1425. LI Y F, ZENG X G, LIAO Y, et al. Thermal-visco plastic constitutive relation of Ti-6Al-4V alloy and numerical simulation by modified Johnson-Cook modal[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(7):1419-1425(in Chinese). [22] 陈敏. TC4钛合金力学性能测试及动态材料模型研究[D]. 南京:南京航空航天大学, 2012:20-32. CEHN M. Research on mechanical properties test and dynamic material model of Ti6Al4V titanium alloy[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012:20-32(in Chinese). [23] LESUER D R. Experimental investigations of material models for Ti-6Al-4V titanium and 2024-T3:DOT/FAA/AR-00/25[R]. Washington.D.C.:DOT, 2000. |