林忠钦1(), 于忠奇1, 戴冬华2, 樊晓光3, 余圣甫4, 顾冬冬2, 李淑慧1, 史玉升4
收稿日期:
2022-05-22
修回日期:
2022-06-10
接受日期:
2022-07-11
出版日期:
2022-07-22
发布日期:
2022-07-21
通讯作者:
林忠钦
E-mail:zqlin@sjtu.edu.cn
基金资助:
Zhongqin LIN1(), Zhongqi YU1, Donghua DAI2, Xiaoguang FAN3, Shengfu YU4, Dongdong GU2, Shuhui LI1, Yusheng SHI4
Received:
2022-05-22
Revised:
2022-06-10
Accepted:
2022-07-11
Online:
2022-07-22
Published:
2022-07-21
Contact:
Zhongqin LIN
E-mail:zqlin@sjtu.edu.cn
Supported by:
摘要:
复杂高筋薄壁构件在航天飞行器中被广泛应用,整体制造是实现这类构件轻量化的重要途径,也是当前制造领域最具有挑战的工程难题之一,其中旋压-增材复合制造代表了复杂高筋薄壁构件整体制造的前沿。近几年,本文作者研究团队在复杂航天薄壁筒段旋压-增材复合制造方向上开展了较为系统的研究工作。从内筋薄壁筒段旋压成形和等材-增材复合制造两个角度对国内外学者研究工作进行总结;同时,从内筋铝合金筒段旋压断裂机制与组织演变规律、筒壁内增材热力学行为与组织调控、旋压-增材复合制造工艺等方面介绍了当前初步研究成果,并对旋压-增材复合制造技术的发展进行了展望。比较全面地梳理了复杂高筋薄壁筒段复合制造技术现状和发展趋势,为复杂薄壁构件整体制造技术研究提供指导。
中图分类号:
林忠钦, 于忠奇, 戴冬华, 樊晓光, 余圣甫, 顾冬冬, 李淑慧, 史玉升. 复杂高筋薄壁构件旋压-增材复合制造技术发展与展望[J]. 航空学报, 2023, 44(9): 627493-627493.
Zhongqin LIN, Zhongqi YU, Donghua DAI, Xiaoguang FAN, Shengfu YU, Dongdong GU, Shuhui LI, Yusheng SHI. Development and prospect of metal spinning: Additive hybrid manufacturing technology for complex thin⁃walled component with high ribs[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 627493-627493.
表 1
等材增材复合制造力学性能
材料 (等材+增材) | 工艺 | 界面 | 基体 | 断裂区 | ||||
---|---|---|---|---|---|---|---|---|
σ0.2/MPa | σb/MPa | ε/% | σ0.2/MPa | σb/MPa | ε/% | |||
CMnAlNb+18Ni300[ | 锻造+SLM | 502±19 | 841±26 | 7±1 | 385±1 | 719±1 | 21±0 | |
AerMet100 +AerMet100[ | 锻造+LMD | 1 047 | 1 223 | 10.3 | 840 | 1 192 | 16.8 | 锻件区 |
TC4+ TC4[ | 锻造+SLM | 972±6 | 1 061±12 | 9.3±0.8 | 855±2 | 905±4 | 16.1±2.8 | 增材区 |
TC4+ TC4[ | 锻造+LMD | 962 | 1 029 | 12 | 825 | 895 | 10 | |
TC4+ TC4[ | 锻造+WAAM | 850±8.1 | 934±10 | 8±0.4 | 920±9.1 | 998±14.2 | 17±0.7 | 增材区 |
TC4+ TC4[ | 锻造+LMD | 927 | 1 005 | 14.3 | 970 | 1 032 | 17 | 增材区 |
TC4+ TC4[ | CMT+ 层间锻造 | 850±20 | 930±20 | 6±3 | 827 | 896 | 10 |
1 | 全栋梁, 时光辉, 关成启, 等. 结构优化技术在高速飞行器上的应用与面临的挑战[J]. 力学与实践, 2019, 41(4): 373-381, 415. |
QUAN D L, SHI G H, GUAN C Q, et al. Applications and challenges of structural optimization in high-speed aerocraft[J]. Mechanics in Engineering, 2019, 41(4): 373-381, 415 (in Chinese). | |
2 | 黄红岩,苏力军,雷朝帅,等. 可重复使用热防护材料应用与研究进展[J]. 航空学报,2020,41(12):023716. |
HUANG H Y, SU L J, LEI C S, et al. Reusable thermal protective materials: application and research progress[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):023716 (in Chinese). | |
3 | 于忠奇, 王凤琪, 戴冬华,等. 带筋薄壁筒体类构件流动旋压技术研究进展[J]. 塑性工程学报, 2021, 28(8):1-10. |
YU Z Q, WANG F Q, DAI D H,et al. A review of flow spinning technology of stiffened thin-walled cylinders[J]. Journal of Plasticity Engineering,2021, 28(8):1-10 (in Chinese). | |
4 | 雷煜东,詹梅,樊晓光,等. 带筋薄壁构件成形制造技术的发展与展望[J]. 西北工业大学学报, 2022, 40(1): 1-17. |
LEI Y D, ZHAN M, FAN X G, et al. A review on manufacturing technologies of thin-walled components with ribs[J]. Journal of Northwestern Polytechnical University, 2022, 40(1): 1-17 (in Chinese). | |
5 | GU D D, SHI X Y, POPRAWE R, et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 2021, 372:eabg1487. |
6 | AHUJA B, SCHAUB A, KARG M, et al. High power laser beam melting of Ti-6Al-4V on formed sheet metal to achieve hybrid structures[C]∥Laser 3D Manufacturing II. 2015, 9353: 118-127. |
7 | HUBER F, PAPKE T, KERKIEN M, et al. Customized exposure strategies for manufacturing hybrid parts by combining laser beam melting and sheet metal forming[J]. Journal of Laser Applications, 2019, 31(2): 022318. |
8 | SCHNEIDER J, SEIDEL A, GUMPINGER J, et al. Advanced manufacturing approach via the combination of selective laser melting and laser metal deposition[J]. Journal of Laser Applications, 2019, 31(2): 022317. |
9 | ZHU Y Y, LI J, TIAN X J, et al. Microstructure and mechanical properties of hybrid fabricated Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy by laser additive manufacturing[J]. Materials Science and Engineering: A, 2014, 607: 427-434. |
10 | WAGNER J, DOMACK M, HOFFMAN E. Recent advances in near-net-shape fabrication of Al-Li alloy 2195 for launch vehicles[R]. 2017. |
11 | ALVES L M, GAMEIRO J, SILVA C M A, et al. Sheet-bulk forming of tubes for joining applications[J]. Journal of Materials Processing Technology, 2017, 240:154-161. |
12 | 雷煜东, 王强, 张治民, 等.旋转挤压裂纹萌生趋势的数值模拟[J]. 塑性工程学报, 2018, 25(2):122-127. |
LEI Y D, WANG Q, ZHANG Z M,et al. Numerical simulation of crack initiation trends during rotating extrusion[J]. Journal of Plasticity Engineering, 2018, 25(2): 122-127 (in Chinese). | |
13 | HAN X H, HUA L, PENG L, et al. An innovative radial envelope forming method for manufacturing thin-walled cylindrical ring with inner web ribs[J]. Journal of Materials Processing Technology, 2020, 286: 116836. |
14 | TIAN D Y, HAN X H, HUA L, et al. A novel process for axial closed extrusion of ring part with mesh-like ribs[J]. International Journal of Mechanical Sciences, 2020, 165: 105186. |
15 | 薛克敏,江树勇,康达昌. 带纵向内筋薄壁筒形件强旋成形[J]. 材料科学与工艺,2002, 10(3): 287-290. |
XUE K M, JIANG S Y, KANG D C. Power spinning deformation of thin-walled cylinders with longitudinal inner ribs[J]. Materials Science and Technology, 2002, 10(3): 287-290 (in Chinese). | |
16 | 张涛,刘智冲,马世成. 旋压成形带内筋筒形件的工艺研究及数值模拟[J]. 机械工程学报,2007, 43(4):109-112, 118. |
ZHANG T, LIU Z C, MA S C. Technologic research and numerical analysis of spinning of cylinders with inner ribs[J]. Journal of Mechanical Engineering, 2007, 43(4): 109-112, 118 (in Chinese). | |
17 | 张利鹏,刘智冲. 带内筋铝合金筒形件强力旋压成形工艺研究[J]. 塑性工程学报,2007, 14(6): 109-113. |
ZHANG L P, LIU Z C. Research on power spinning forming process of aluminium alloy cylinders with inner ribs[J]. Journal of Plasticity Engineering, 2007, 14(6): 109-113 (in Chinese). | |
18 | DOMACK M S, WAGNER J A. Innovative manufacturing of cylinders with integral stiffeners[R]. 2014. |
19 | XIA Q X, LONG J C, XIAO G F, et al. Deformation mechanism of ZK61 magnesium alloy cylindrical parts with longitudinal inner ribs during hot backward flow forming[J]. Journal of Materials Processing Technology, 2021, 296:117197. |
20 | 丁永宏,张军,王维新,等. 一种内环筋筒体旋压工装及成形方法: 中国,CN108500108A[P]. 2017-02-27. |
DING Y H, ZHANG J, WANG W X, et al. Spinning tool for barrel with inner circumferential rib and forming method: China, CN108500108A[P]. 2017-02-27 (in Chinese). | |
21 | 王东坡, 马世成, 孙昂, 等. 一种带内环向加强筋长筒体多道次旋压成形方法: 中国,CN107962098A[P]. 2018-04-27. |
WANG D P, MA S C, SUN A, et al. Multi-pass spinning forming method for long barrel with inner annular reinforcing ribs: China, CN107962098A[P]. 2018-04-27 (in Chinese). | |
22 | 马世成, 王东坡, 王振杰. 带环向内加强筋曲母线薄壁壳体的内旋压成形工艺:中国, CN108145381A[P]. 2020-08-07. |
MA S J, WANG D P, WANG Z J. Inner spinning process of thin-wall cone shell with inner ring ribs:China, CN108145381A[P]. 2020-08-07 (in Chinese). | |
23 | 杨合, 詹梅, 李甜, 等. 铝合金大型复杂薄壁壳体旋压研究进展[J]. 中国有色金属学报, 2011, 21(10): 2534-2550. |
YANG H, ZHAN M, LI T, et al. Advances in spinning of aluminum alloy large-sized complicated thin-walled shells[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10):2534-2550 (in Chinese). | |
24 | LUO W, CHEN F, XU B B, et al. Study on compound spinning technology of large thin-walled parts with ring inner ribs and curvilinear generatrix[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(5): 1199-1216. |
25 | SARIYARLIOGLU E C, AYDIN G, GULEN A, et al. Comparison between conventional flow forming methods and core mandrel flow forming method[C]∥The 5th International Conference on New Forming Technology (ICNFT2018), 2018. |
26 | XU H Q, LI M Z, LI L L, et al. Power spinning study of thin-walled 5A06 aluminum alloy cylinder with longitudinal and hoop inner ribs for manufacturing engineering[J]. Advanced Materials Research, 2012,583: 301-305. |
27 | LYU W, ZHAN M, GAO P F, et al. Improvement of rib-grid structure of thin-walled tube with helical grid-stiffened ribs based on the multi-mode filling behaviors in flow forming[J]. Journal of Materials Processing Technology, 2021, 296:117167. |
28 | 刘亚鹏. 带外筋薄壁筒形件复合流动成形工艺研究及装备结构设计[D]. 武汉:武汉理工大学, 2022. |
LIU Y P. Research on composite flow forming and equipment structure design of thin-walled cylindrical parts with external ribs[D]. Wuhan: Wuhan University of Technology, 2022 (in Chinese). | |
29 | SHAN D B, YANG G P, XU W C. Deformation history and the resultant microstructure and texture in backward tube spinning of Ti-6Al-2Zr-1Mo-1V[J]. Journal of Materials Processing Technology, 2009, 209(17):5713-5719. |
30 | MOHEBBI M S, AKBARZADEH A. Experimental study and FEM analysis of redundant strains in flow forming of tubes[J]. Journal of Materials Processing Technology, 2010, 210(2): 389-395. |
31 | GUR M, TIROSH J. Plastic flow instability under compressive loading during shear spinning process[J]. Journal of Engineering for Industry, 1982,104(1):17-22. |
32 | JIANG S Y, ZHENG Y F, REN Z Y, et al. Multi-pass spinning of thin-walled tubular part with longitudinal inner ribs[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(1):215-221. |
33 | 许春停,薛克敏,李萍. 带纵向内筋筒形件滚珠反旋工艺模拟和缺陷分析[J]. 河南科技大学学报(自然科学版),2006, 27(4): 9-11, 21. |
XU C T, XUE K M, LI P. Simulation and defect analysis of backward ball spinning for cylindrical parts with longitudinal inner ribs[J]. Journal of Henan University of Science and Technology (Natural Science Edition), 2006, 27(4): 9-11, 21 (in Chinese). | |
34 | LYU W, ZHAN M, GAO P F, et al. Rib filling behavior in flow forming of thin‑walled tube with helical grid‑stiffened ribs[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(5):2877-2894. |
35 | 夏琴香, 江鹏, 龙锦川, 等.内筋参数对镁合金带内筋筒形件热强旋成形材料流动的影响[J]. 塑性工程学报, 2022, 29(2):1-7. |
XIA Q X, JIANG P, LONG J C, et al. Influence of inner-rib parameters on material flow of magnesium alloy cylindrical parts with inner ribs during hot power spinning[J]. Journal of Plasticity Engineering, 2022, 29(2): 1-7 (in Chinese). | |
36 | MA H, XU W C, JIN B C, et al. Damage evaluation in tube spinnability test with ductile fracture criteria[J]. International Journal of Mechanical Sciences, 2015, 100: 99-111. |
37 | ZHAN M, GU C Q, JIANG Z Q, et al. Application of ductile fracture criteria in spin-forming and tube-bending processes[J]. Computational Materials Science, 2009, 47(2): 353-365. |
38 | 夏琴香, 周立奎, 肖刚锋, 等. 金属剪切旋压成形时的韧性断裂准则[J]. 机械工程学报, 2018, 54(14): 66-73. |
XIA Q X, ZHOU L K, XIAO G F, et al. Ductile fracture criterion for metal shear spinning [J]. Journal of Mechanical Engineering, 2018,54(14): 66-73 (in Chinese). | |
39 | WU H, XU W C, SHAN D B, et al. Mechanism of increasing spinnability by multi-pass spinning forming- Analysis of damage evolution using a modified GTN model[J]. International Journal of Mechanical Sciences, 2019, 159: 1-19. |
40 | WU H, XU W C, SHAN D B, et al. An extended GTN model for low stress triaxiality and application in spinning forming[J]. Journal of Materials Processing Technology, 2019, 263: 112-128. |
41 | SINGH A K, KUMAR A, NARASIMHAN K, et al. Understanding the deformation and fracture mechanisms in backward flow-forming process of Ti-6Al-4V alloy via a shear modified continuous damage model[J]. Journal of Materials Processing Technology, 2021, 292: 117060. |
42 | LI R, ZHAN M, ZHENG Z B, et al. A constitutive model coupling damage and material anisotropy for wide stress triaxiality[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3509-3525. |
43 | LI R, ZHENG Z B, ZHAN M, et al. A comparative study of three forms of an uncoupled damage model as fracture judgment for thin-walled metal sheets[J]. Thin-Walled Structures, 2021, 169: 108321. |
44 | 顾彬, 何霁, 李淑慧, 等. 金属板料各向异性断裂模型及断裂实验研究进展[J]. 塑性工程学报, 2019, 26(1):1-14. |
GU B, HE J, LI S H,et al. Research progress on anisotropic fracture models and fracture tests for sheet metals[J]. Journal of Plasticity Engineering, 2019, 26(1):1-14 (in Chinese). | |
45 | BAO Y B, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences, 2004, 46(1): 81-98. |
46 | BAI Y L, WIERZBICKI T. Application of extended Mohr-Coulomb criterion to ductile fracture[J]. International Journal of Fracture, 2010, 161(1): 1-20. |
47 | LOU Y S, YOON J W, HUH H. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality[J]. International Journal of Plasticity, 2014, 54: 56-80. |
48 | MOHR D, MARCADET S J. Micromechanically-motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities[J]. International Journal of Solids and Structures, 2015, 67-68: 40-55. |
49 | PENG Z, ZHAO H, LI X. New ductile fracture model for fracture prediction ranging from negative to high stress triaxiality[J]. International Journal of Plasticity, 2021, 145: 103057. |
50 | NAHSHON K, HUTCHINSON J W. Modification of the Gurson model for shear failure[J]. European Journal of Mechanics-A/Solids, 2008, 27(1): 1-17. |
51 | XUE L. Constitutive modeling of void shearing effect in ductile fracture of porous materials[J]. Engineering Fracture Mechanics, 2008, 75(11): 3343-3366. |
52 | NIELSEN K L, TVERGAARD V. Effect of a shear modified Gurson model on damage development in a FSW tensile specimen[J]. International Journal of Solids and Structures, 2009, 46(3-4): 587-601. |
53 | WU H F, ZHUANG X C, ZHAO Z. Extended GTN model for predicting ductile fracture under a broad range of stress states[J]. International Journal of Solids and Structures, 2022, 239-240: 111452. |
54 | HE Z, ZHU H, HU Y M. An improved shear modified GTN model for ductile fracture of aluminium alloys under different stress states and its parameters identification[J]. International Journal of Mechanical Sciences, 2021, 192: 106081. |
55 | CHOW C L, WANG J E. An anisotropic theory of elasticity for continuum damage mechanics[J]. International Journal of Fracture, 1987, 33(1): 3-16. |
56 | BENZERGA A A, BESSON J, PINEAU A. Anisotropic ductile fracture: Part II: theory[J]. Acta Materialia, 2004, 52(15): 4623-4638. |
57 | BEESE A M, LUO M, LI Y N, et al. Partially coupled anisotropic fracture model for aluminum sheets[J]. Engineering Fracture Mechanics, 2010, 77(7): 1128-1152. |
58 | DONG L, LI S H, HE J, et al. Ductile fracture initiation of anisotropic metal sheets[J]. Journal of Materials Engineering and Performance, 2017, 26(7): 3285-3298. |
59 | LOU Y, YOON J W. Anisotropic ductile fracture criterion based on linear transformation[J]. International Journal of Plasticity, 2017, 93: 3-25. |
60 | LI S H, HE J, GU B, et al. Anisotropic fracture of advanced high strength steel sheets: Experiment and theory[J]. International Journal of Plasticity, 2018, 103: 95-118. |
61 | HE J, LI Y F, GU B, LI S H, et al. Effects of reverse loading on forming limit predictions with distortional anisotropic hardening under associated and non-associated flow rules[J]. International Journal of Mechanical Sciences, 2019, 156: 446-461. |
62 | HE J, HAN G F, GUO C. Non-associated anisotropic plasticity of metal sheets based on the distortional concept[J]. Thin-Walled Structures, 2021, 161: 107523. |
63 | WIERZBICKI T, BAO Y B, LEE Y W, et al. Calibration and evaluation of seven fracture models[J]. International Journal of Mechanical Sciences, 2005, 47(4-5): 719-743. |
64 | WIERZBICKI T, BAO Y, BAI Y. A new experimental technique for constructing a fracture envelope of metals under multi-axial loading[C]∥Proceedings of the 2005 SEM Annual Conference and Exposition on Experimental And Applied Mechanics. 2005. |
65 | ZHAN M, WANG X X, LONG H. Mechanism of grain refinement of aluminium alloy in shear spinning under different deviation ratios[J]. Materials & Design, 2016, 108: 207-216. |
66 | MOLLADAVOUDI H R, DJAVANROODI F. Experimental study of thickness reduction effects on mechanical properties and spinning accuracy of aluminum 7075-O, during flow forming[J]. The International Journal of Advanced Manufacturing Technology, 2011, 52(9): 949-957. |
67 | HOMBERG W, HORNJAK D, BEERWALD C. Manufacturing of complex functional graded workpieces with the friction-spinning process[J]. International Journal of Material Forming, 2010, 3(1): 943-946. |
68 | HU Z L, YUAN S J, WANG X S, et al. Microstructure and mechanical properties of Al-Cu-Mg alloy tube fabricated by friction stir welding and tube spinning[J]. Scripta Materialia, 2012, 66(7): 427-430. |
69 | HUANG K, LOGÉ R E. A review of dynamic recrystallization phenomena in metallic materials[J]. Materials & Design, 2016, 111: 548-574. |
70 | TÓTH L S, ESTRIN Y, LAPOVOK R, et al. A model of grain fragmentation based on lattice curvature[J]. Acta Materialia, 2010, 58(5): 1782–1794. |
71 | GOURDET S, MONTHEILLET F. A model of continuous dynamic recrystallization[J]. Acta Materialia, 2003, 51(9): 2685-2699. |
72 | YAMAGATA H. Dynamic recrystallization and dynamic recovery in pure aluminum at 583K[J]. Acta Metallurgica et Materialia, 1995, 43(2): 723-729. |
73 | CASTRO-FERNÁNDEZ F F R, SELLARS C M. Static recrystallisation and recrystallisation during hot deformation of Al-1Mg-1Mn alloy[J]. Materials Science and Technology, 1988, 4(7): 621-627. |
74 | DOUGHERTY L M, ROBERTSON I M, VETRANO J S. Direct observation of the behavior of grain boundaries during continuous dynamic recrystallization in an Al-4Mg-0.3Sc alloy[J]. Acta Materialia, 2003, 51(15): 4367-4378. |
75 | MAZURINA I, SAKAI T, MIURA H, et al. Effect of deformation temperature on microstructure evolution in aluminum alloy 2219 during hot ECAP[J]. Materials Science and Engineering: A, 2008, 486(1-2): 662-671. |
76 | MAZURINA I, SAKAI T K, MIURA H, et al. Partial grain refinement in Al-3%Cu alloy during ECAP at elevated temperatures[J]. Materials Transactions, 2009, 50(1): 101-110. |
77 | ZHANG J J, YI Y P, HUANG S Q, et al. Dynamic recrystallization mechanisms of 2195 aluminum alloy during medium/high temperature compression deformation[J]. Materials Science and Engineering: A, 2021, 804: 140650. |
78 | 杨智皓, 路晓辉, 兰箭, 等. 环件轧制多尺度数值模拟研究进展[J]. 塑性工程学报, 2022, 29(3): 1-12. |
YANG Z H, LU X H, LAN J, et al. Research process in multi-scale numerical simulation of ring rolling[J]. Journal of Plasticity Engineering, 2022, 29(3): 1-12 (in Chinese). | |
79 | LIN J, DEAN T A. Modelling of microstructure evolution in hot forming using unified constitutive equations[J]. Journal of Materials Processing Technology, 2005, 167(2-3): 354-362. |
80 | GUO L G, WANG F Q, ZHEN P L, et al. A novel unified model predicting flow stress and grain size evolutions during hot working of non-uniform as-cast 42CrMo billets[J]. Chinese Journal of Aeronautics, 2019, 32(2): 531-545. |
81 | SU Z X, SUN C Y, WANG M J, et al. Modeling of microstructure evolution of AZ80 magnesium alloy during hot working process using a unified internal state variable method[J]. Journal of Magnesium and Alloys, 2022, 10(1): 281-294. |
82 | MORKISZ P, OPROCHA P, PRZYBYŁOWICZ P, et al. Prediction of distribution of microstructural parameters inmetallic materials described by differential equations with recrystallization term[J]. International Journal for Multiscale Computational Engineering, 2019, 17(3): 361-371. |
83 | GAO P F, YU C, FU M W, et al. Formability enhancement in hot spinning of titanium alloy thin-walled tube via prediction and control of ductile fracture[J]. Chinese Journal of Aeronautics, 2022, 35(2): 320-331. |
84 | MOHAMMADI M, DRYDEN J R. Influence of the spatial variation of Poisson’s ratio upon the elastic field in nonhomogeneous axisymmetric bodies[J]. International Journal of Solids and Structures, 2009, 46(3-4): 788-795. |
85 | HADADZADEH A, AMIRKHIZ B S, SHAKERIN S, et al. Microstructural investigation and mechanical behavior of a two-material component fabricated through selective laser melting of AlSi10Mg on an Al-Cu-Ni-Fe-Mg cast alloy substrate [J]. Additive Manufacturing, 2020, 31: 100937. |
86 | 马健凯, 李俊杰, 王志军, 等. 锻造-增材复合制造Ti-6Al-4V合金结合区显微组织及力学性能[J]. 金属学报, 2021, 57(10): 1246-1257. |
MA J K, LI J J, WANG Z J, et al. Bonding zone microstructure and mechanical properties of forging-additive hybrid manufactured Ti-6Al-4V alloy[J]. Acta Metallurgica Sinica, 2021, 57(10): 1246-1257 (in Chinese). | |
87 | CUI D C, ZHANG Y S, HE F, et al. Heterogeneous microstructure of the bonding zone and its dependence on preheating in hybrid manufactured Ti-6Al-4V[J]. Materials Research Letters, 2021, 9(10): 422-428. |
88 | BAMBACH M, SIZOVA I, SYDOW B, et al. Hybrid manufacturing of components from Ti-6Al-4V by metal forming and wire-arc additive manufacturing[J]. Journal of Materials Processing Technology, 2020, 282:116689. |
89 | MERKLEIN M, SCHULTE R, PAPKE T. An innovative process combination of additive manufacturing and sheet bulk metal forming for manufacturing a functional hybrid part[J]. Journal of Materials Processing Technology, 2021, 291: 117032. |
90 | YU J H, LEE K Y, SHIM D S, et al. Characterization of mechanical behavior in repaired FC300 using directly deposited AISI-P21 and AISI-H13 metal powders[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020, 234(1-2): 157-169. |
91 | GHONCHEH M H, SANJARI M, CYR E, et al. On the solidification characteristics, deformation, and functionally graded interfaces in additively manufactured hybrid aluminum alloys[J]. International Journal of Plasticity, 2020, 133: 102840. |
92 | KUČEROVÁ L, ZETKOVÁ I, JENÍČEK Š, et al. Hybrid parts produced by deposition of 18Ni300 maraging steel via selective laser melting on forged and heat treated advanced high strength steel [J]. Additive Manufacturing, 2020, 32: 101108. |
93 | 王玉岱, 刘洋, 朱言言, 等. 热处理对复合制造AerMet100超高强度钢组织均匀性与拉伸性能的影响[J]. 金属热处理, 2022,47(4): 1-9. |
WANG Y D, LIU Y, ZHU Y Y, et al. Effect of heat treatment on microstructure homogeneity and tensile properties of hybrid fabricated AerMet100 ultra-high strength steel [J]. Heat Treatment of Metals, 2022,47(4):1-9 (in Chinese). | |
94 | 朱言言, 李冲, 刘玉婷, 等. 复合制造TC4钛合金组织与拉伸性能[J]. 航空制造技术, 2021,64(17): 14-20. |
ZHU Y Y, LI C, LIU Y T, et al. Microstructure and tensile properties of hybrid manufacturing TC4 titanium alloy[J]. Aeronautical Manufacturing Technology, 2021, 64(17): 14-20 (in Chinese). | |
95 | 刘祥宇, 王辰阳, 井志成,等. 激光沉积与热轧复合制造TC4钛合金组织性能的研究[J]. 电焊机, 2022, 52(5): 99-105. |
LIU X Y, WANG C Y, JING Z C, et al. Study on microstructure and properties of TC4 titanium alloy fabricated by laser additive manufacturing and hot rolling[J]. Electric Welding Machine, 2022, 52(5): 99-105 (in Chinese). | |
96 | ZHAO Z, CHEN J, TAN H, et al. Microstructure and mechanical properties of laser repaired TC4 titanium alloy[J]. Rare Metal Materials and Engineering, 2017, 46(7): 1792-1797. |
97 | SHCHITSYN Y, KARTASHEV M, KRIVONOSOVA E, et al. Formation of structure and properties of two-phase Ti-6Al-4V alloy during cold metal transfer additive deposition with interpass forging[J]. Materials, 2021, 14(16): 4415. |
98 | CHONG L, RAMAKRISHNA S, SINGH S. A review of digital manufacturing-based hybrid additive manufacturing processes[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5): 2281-2300. |
99 | MA C L, GU D D, DAI D H, et al. Development of interfacial stress during selective laser melting of TiC reinforced TiAl composites: Influence of geometric feature of reinforcement[J]. Materials & Design, 2018, 157: 1-11. |
100 | 吴俣, 马朋召, 白文倩, 等. 不同扫描策略下316L/ AISI304激光熔覆过程中温度场-应力场的数值模拟[J]. 中国激光, 2021, 48(22): 18-29. |
WU Y, MA P Z, BAI W Q, et al. Numerical simulation of temperature field and stress field in 316L/AISI304 laser cladding with different scanning strategies[J]. Chinese Journal of Lasers, 2021, 48(22): 18-29 (in Chinese). | |
101 | LI R S, WANG G L, ZHAO X S, et al. Effect of path strategy on residual stress and distortion in laser and cold metal transfer hybrid additive manufacturing[J]. Additive Manufacturing, 2021, 46: 102203. |
102 | TEBAAY L M, HAHN M, TEKKAYA A E. Distortion and dilution behavior for laser metal deposition onto thin sheet metals[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2020, 7(3): 625-634. |
103 | LIU X, HUANG L, WANG Y H, et al. Effect of forged substrate geometry on temperature and stress field in additive manufacturing[J]. Journal of Manufacturing Processes, 2020, 52:79-95. |
104 | HONG M P, KIM Y S. Residual stress reduction technology in heterogeneous metal additive manufacturing[J]. Materials, 2020, 13(23): 5516. |
105 | 鞠洪涛, 徐东生, 单飞虎, 等. Ti-6Al-4V电弧熔丝增材辊轧复合制造的有限元模拟[J]. 稀有金属材料与工程, 2020, 49(3): 878-882. |
JU H T, XU D S, SHAN F H, et al. Finite element simulation of hybrid manufacturing of Ti-6Al-4V by wire arc additive manufacturing and rolling[J]. Rare Metal Materials and Engineering, 2020, 49(3): 878-882 (in Chinese). | |
106 | GU B, HE J, LI S H, et al. Anisotropic fracture modeling of sheet metals: from in-plane to out-of-plane[J]. International Journal of Solids and Structures, 2020, 182-183: 112-140. |
107 | 李淑慧, 顾彬, 何霁, 等. 一种金属板材面外剪切性能测试方法: 中国,CN107228801A[P]. 2017-10-03. |
LI S H, GU B, HE J, et al. Metal plate out-of-plane shear performance test method: China, CN107228801A[P]. 2017-10-03 (in Chinese). | |
108 | 陈源, 顾彬, 叶欣, 等. 细小散斑测试新方法在板材断裂中的实验研究[C]∥第十五届全国塑性工程学会年会暨第七届全球华人塑性加工技术交流会学术会议论文集. 2017: 1004-1009. |
CHEN Y, GU B, YE X. Experimental study on measuring sheet metal fracture strain using new method of small speckle[C]∥The 15th Annual Conference of China Society for Technology of Plasticity. 2017:1004-1009 (in Chinese). | |
109 | HAN G F, HE J, LI S H. Simple shear deformation of sheet metals: finite strain perturbation analysis and high-resolution quasi-in-situ strain measurement[J]. International Journal of Plasticity, 2022, 150:103194. |
110 | 曾祥. 铝合金纵横内筋筒形件流动旋压成形与组织演变研究[D]. 西安:西北工业大学, 2021. |
ZENG X. Study on Flow spinning forming and microstructure evolution of aluminum alloy tubular part with longitudinal and transverse inner ribs[D]. Xi’an: Northwestern Polytechnical University, 2021 (in Chinese). | |
111 | GAN T, YU Z Q, ZHAO Y X, et al. A continuous dynamic recrystallization constitutive model combined with grain fragmentation and subgrain rotation for aluminum alloy 2219 under hot deformation[J]. Modelling and Simulation in Materials Science and Engineering, 2021, 29(2):025002. |
112 | ZENG X, FAN X G, LI H W, et al. Grain morphology related microstructural developments in bulk deformation of 2219 aluminum alloy sheet at elevated temperature[J]. Materials Science and Engineering: A, 2019, 760: 328-338. |
113 | 王凤琪, 于忠奇, 孟烨晖, 等. 复杂内筋铝筒段旋压变形规律和再结晶组织演变数值仿真[J]. 航空学报, 2022, 43(6): 627341. |
WANG F Q, YU Z Q, MENG Y H, et al. The deformation mechanism and microstructure evolution of aluminum stiffened cylinder during hot flow spinning based on numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 627341 (in Chinese). | |
114 | ZENG X, FAN X G, LI H W, et al. Heterogeneous microstructure and mechanical property of thin-walled tubular part with cross inner ribs produced by flow forming[J]. Materials Science and Engineering: A, 2020, 790:139702. |
115 | ZENG X, FAN X G, LI H W, et al. Grain refinement in hot working of 2219 aluminium alloy: on the effect of deformation mode and loading path[J]. Materials Science and Engineering: A, 2020,794:139905. |
116 | LI Y Z, GU D D, SHI X Y, et al. Influence of environmental constraints and carrier gas velocity on powder concentration and temperature distribution during laser inside additive manufacturing process[J]. CIRP Journal of Manufacturing Science and Technology, 2021,32:70-80. |
117 | SHI X Y, GU D D, LI Y Z, et al. Thermal behavior and fluid dynamics within molten pool during laser inside additive manufacturing of 316L stainless steel coating on inner surface of steel tube[J]. Optics & Laser Technology, 2021, 138:106917. |
118 | ZHANG H, GU D D, DAI D H, et al. Influence of heat treatment on corrosion behavior of rare earth element Sc modified Al-Mg alloy processed by selective laser melting[J]. Applied Surface Science, 2020, 509:145330. |
119 | ZENG X, FAN X G, LI H W, et al. Die filling mechanism in flow forming of thin-walled tubular parts with cross inner ribs[J]. Journal of Manufacturing Processes, 2020, 58: 832-844. |
120 | ZENG X, FAN X G, LI H W, et al. Flow forming process of thin-walled tubular parts with cross inner ribs[J]. Procedia Manufacturing, 2018, 15: 1239-1246. |
121 | 朱宝行,赵亦希,于忠奇. 薄壁筒形件流动旋压内筋高度计算方法[J]. 塑性工程学报,2020, 27(2): 68-78. |
ZHU B H, ZHAO Y X, YU Z Q. Calculation method of inner rib height of thin-walled cylindrical parts in flow spinning[J]. Journal of Plasticity Engineering, 2020, 27(2): 68-78 (in Chinese). | |
122 | 李昕. 纵筋薄壁铝合金筒体流动旋压性能研究[D]. 上海:上海交通大学,2019. |
LI X. Study on flow spinning process and properties for thin-walled aluminum cylinder with longitudinal inner ribs[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese). | |
123 | 朱宝行. 带网格内筋薄壁筒形件流动旋压工艺研究[D]. 上海: 上海交通大学,2019. |
ZHU B H. Study on flow forming process of thin-walled cylindrical parts with grid inner ribs[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese). | |
124 | 周宇, 赵勇, 于忠奇, 等. 交叉内筋薄壁筒体错距旋压成形数值仿真[J].上海交通大学学报, 2022, 56(1):62-69. |
ZHOU Y, ZHAO Y, YU Z Q, et al. Numerical simulation of stagger spinning of cylindrical part with cross inner ribs[J]. Journal of Shanghai Jiaotong University, 2022, 56(1):62-69 (in Chinese). | |
125 | 武凯琦. 2219铝合金带内筋薄壁筒形件随动约束旋压成形工艺研究[D]. 西安:西北工业大学, 2022. |
WU K Q. Research on kinematic confined flow forming of 2219 aluminum alloy thin-walled tubular part with inner ribs[D]. Xi’an: Northwestern Polytechnical University, 2022 (in Chinese). | |
126 | 李晓凯, 赵亦希, 于忠奇, 等. 铝合金带筋构件超声辅助旋压仿真研究[J]. 上海交通大学学报, 2021, 55(4): 394-402. |
LI X K, ZHAO Y X, YU Z Q, et al. Simulation study of aluminum alloy ribbed member spinning with ultrasonic vibration[J]. Journal of Shanghai Jiaotong University, 2021, 55(4): 394-402 (in Chinese). | |
127 | 李双利,赵亦希,于忠奇,等. 2219-O铝合金声软化效应建模与预测[J]. 航空学报, 2022, doi: 10.7527/S1000-6893.2022.26884 . |
LI S L, ZHAO Y X, YU Z Q, et al. Modeling and prediction of acoustic softening effect of 2219-O aluminum alloy during ultrasound-assisted tensile process [J]. Acta Aeronautica et Astronautica Sinica, 2022. doi: 10.7527/S1000-6893.2022.26884 (in Chinese). | |
128 | CUI J H, ZHAO Y X, LI X K, et al. Research on the influence of ultrasonic on the inner rib’s surface morphology of ribbed cylindrical parts in flow spinning process[J]. Journal of Manufacturing Processes, 2021, 67: 376-387. |
129 | 任霆伟. 铝合金带纵横内筋薄壁筒形件流动旋压残余应力研究[D]. 西安:西北工业大学, 2022. |
REN T W. Study on residual stress in flow spinning of aluminum alloy thin-walled cylindrical parts with longitudinal and transverse inner ribs[D]. Xi’an: Northwestern Polytechnical University, 2022 (in Chinese). | |
130 | LI Y J, YU S F, CHEN Y, et al. Wire and arc additive manufacturing of aluminum alloy lattice structure[J]. Journal of Manufacturing Processes, 2020, 50:510-519. |
131 | 唐论,余圣甫,郑博,等 .圆柱面点阵自生 Al2O3铝合金粉芯丝材开发及应用[J].航空学报, 2022, doi:10.7527/S1000-6893.2022.26864 . |
TANG L, YU S F, ZHENG B, et al. Development and application of in-situ Al2O3 aluminum alloy powder core wire for cylindrical lattice[J]. Acta Aeronautica et Astronautica Sinica, 2022. doi: 10.7527/S1000-6893. 2022.26864 (in Chinese). |
[1] | 高同州, 贺小帆, 王晓雷, 李紫光, 朱振涛, 詹志新. 基于CDM理论与SVM模型的2014-T6铝合金疲劳寿命预测[J]. 航空学报, 2024, 45(7): 228952-228952. |
[2] | 司瑞, 陈勇. 民用飞机增材制造技术应用发展趋势[J]. 航空学报, 2024, 45(5): 529677-529677. |
[3] | 应岳峰, 陈琪昊, 王卫东, 毛欣宇. 焊丝超声振动对铝合金熔化极气体保护焊缝成形及气孔的影响[J]. 航空学报, 2024, 45(2): 428711-428711. |
[4] | 唐论, 余圣甫, 郑博, 史玉升, 陈颖. 圆柱面点阵自生Al2O3铝合金粉芯丝材开发及应用[J]. 航空学报, 2023, 44(9): 626864-626864. |
[5] | 王凤琪, 于忠奇, 孟烨晖, 甘甜, 赵亦希. 复杂内筋铝筒段旋压变形规律和再结晶组织演变数值仿真[J]. 航空学报, 2023, 44(9): 627341-627341. |
[6] | 张卫红, 周涵, 李韶英, 朱继宏, 周璐. 航天高性能薄壁构件的材料-结构一体化设计综述[J]. 航空学报, 2023, 44(9): 627428-627428. |
[7] | 金士杰, 王志诚, 田鑫, 孙旭, 林莉. 基于半跨模式波的铝合金板底面缺陷TOFD检测[J]. 航空学报, 2023, 44(4): 426674-426674. |
[8] | 顾孟奇, 朱家才, 郭万林, 薛松. 可重复使用运载火箭结构疲劳耐久性与可靠性展望[J]. 航空学报, 2023, 44(23): 628299-628299. |
[9] | 邹田春, 巨乐章, 管玉玺, 李泽钢, 陈红呈. 铺层方式对CFRP⁃Al胶接接头疲劳行为的影响[J]. 航空学报, 2023, 44(18): 428264-428264. |
[10] | 何盼, 卢超, 石文泽, 朱颖, 陈果, 赵莉萍. 铝合金激光超声表面检测中EMAT接收性能对比[J]. 航空学报, 2023, 44(16): 428085-428085. |
[11] | 张志强, 勾青泽, 路学成, 王浩, 曹轶然, 郭志永. 高强铝合金CMT+P电弧增材制造熔滴过渡行为[J]. 航空学报, 2023, 44(13): 427881-427881. |
[12] | 张天刚, 黄嘉浩, 侯晓云, 张志强. 激光清洗铝合金表面复合漆层作用机制[J]. 航空学报, 2023, 44(11): 427656-427656. |
[13] | 李志强, 陈玮. 高能束流加工技术在航空领域的应用进展[J]. 航空学报, 2022, 43(4): 526882-526882. |
[14] | 李涤尘, 鲁中良, 田小永, 张航, 杨春成, 曹毅, 苗恺. 增材制造——面向航空航天制造的变革性技术[J]. 航空学报, 2022, 43(4): 525387-525387. |
[15] | 姚燕生, 周瑞根, 张成林, 梅涛, 吴敏. 增材制造复杂金属构件表面抛光技术[J]. 航空学报, 2022, 43(4): 525202-525202. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学