张佩宇, 周鑫, 李应红
收稿日期:
2021-03-30
修回日期:
2021-04-28
发布日期:
2021-06-29
通讯作者:
周鑫
E-mail:dr_zhouxin@126.com
基金资助:
ZHANG Peiyu, ZHOU Xin, LI Yinghong
Received:
2021-03-30
Revised:
2021-04-28
Published:
2021-06-29
Supported by:
摘要: 单晶涡轮叶片高能束增材再制造是修复磨损、烧蚀和裂纹等损伤缺陷的主要方式,是航空发动机热端部件特种加工领域最具挑战性的工作之一,其中蕴含的外延生长组织接续与调控机制、内部冶金缺陷控制等科学问题和关键工艺尚未完全突破。梳理了熔焊熔池内凝固组织定向生长的理论发展,基于已有的枝晶异质形核和异向生长理论,构建了单晶高能束修复的基础原理框架;详细分析了"修复工艺-熔池特性-凝固组织"之间的内在关联,提出了保持单晶连续稳定生长的工艺调控准则和熔池监控方法;总结了修复区γ'相等微观组织以及热裂纹、气孔等冶金缺陷的演化规律和调控手段,凝练了单晶修复面临的主要挑战。此外,介绍了航空发动机热端部件再制造领域相关的国外重大研究计划,并对今后研究方向和发展趋势进行总结和展望。
中图分类号:
张佩宇, 周鑫, 李应红. 单晶涡轮叶片高能束修复研究进展[J]. 航空学报, 2022, 43(4): 525610-525610.
ZHANG Peiyu, ZHOU Xin, LI Yinghong. Progress on high energy beam repair of single crystal turbine blades[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525610-525610.
[1] POLLOCK T M. Alloy design for aircraft engines[J]. Nature Materials, 2016, 15(8):809-815. [2] GELL M, DUHL D N, GIAMEI A F. The development of single crystal superalloy turbine blades[C]//Superalloys 1980(Fourth International Symposium), 1980:205-214. [3] POLLOCK T M, TIN S. Nickel-based superalloys for advanced turbine engines:Chemistry, microstructure and properties[J]. Journal of Propulsion and Power, 2006, 22(2):361-374. [4] 李茜, 张福禄, 赵子华. 镍基单晶/柱晶高温合金超高周疲劳研究进展[J]. 航空学报, 2021, 42(5):524340. LI Q, ZHANG F L, ZHAO Z H. Very high cycle fatigue of nickel-based single-crystal and directionally solidified superalloys:Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524340(in Chinese). [5] CARTER T J. Common failures in gas turbine blades[J]. Engineering Failure Analysis, 2005, 12(2):237-247. [6] 姚喆赫, 姚建华, 向巧. 激光再制造技术与应用发展研究[J]. 中国工程科学, 2020, 22(3):63-70. YAO Z H, YAO J H, XIANG Q. Development of laser remanufacturing technology and application[J]. Strategic Study of CAE, 2020, 22(3):63-70(in Chinese). [7] VILAR R, ALMEIDA A. Repair and manufacturing of single crystal Ni-based superalloys components by laser powder deposition-A review[J]. Journal of Laser Applications, 2015, 27(S1):S17004. [8] CHEN C, WANG J, LIAO H, et al. Laser cladding of metals[M]. Germany:Springer Press, 2021:137-159. [9] PANWISAWAS C, TANG Y T, REED R C. Metal 3D printing as a disruptive technology for superalloys[J]. Nature Communications, 2020, 11:2327. [10] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698. WANG H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698(in Chinese). [11] BASAK A, DAS S. Epitaxy and microstructure evolution in metal additive manufacturing[J]. Annual Review of Materials Research, 2016, 46:125-149. [12] DEBROY T, WEI H L, ZUBACK J S, et al. Additive manufacturing of metallic components-Process, structure and properties[J]. Progress in Materials Science, 2018, 92:112-224. [13] HERZOG D, SEYDA V, WYCISK E, et al. Additive manufacturing of metals[J]. Acta Materialia, 2016, 117:371-392. [14] ANGEL N M, BASAK A. On the fabrication of metallic single crystal turbine blades with a commentary on repair via additive manufacturing[J]. Journal of Manufacturing and Materials Processing, 2020, 4(4):101. [15] COLLINS P C, BRICE D A, SAMIMI P, et al. Microstructural control of additively manufactured metallic materials[J]. Annual Review of Materials Research, 2016, 46:63-91. [16] KURZ W, BEZENÇON C, GÄUMANN M. Columnar to equiaxed transition in solidification processing[J]. Science and Technology of Advanced Materials, 2001, 2(1):185-191. [17] MOKADEM S, BEZENÇON C, HAUERT A, et al. Laser repair of superalloy single crystals with varying substrate orientations[J]. Metallurgical and Materials Transactions A, 2007, 38(7):1500-1510. [18] BASAK A, HOLENARASIPURA RAGHU S, DAS S. Microstructures and microhardness properties of CMSX-4® additively fabricated through scanning laser epitaxy (SLE)[J]. Journal of Materials Engineering and Performance, 2017, 26(12):5877-5884. [19] TILLER W A, JACKSON K A, RUTTER J W, et al. The redistribution of solute atoms during the solidification of metals[J]. Acta Metallurgica, 1953, 1(4):428-437. [20] HUNT J D. Steady state columnar and equiaxed growth of dendrites and eutectic[J]. Materials Science and Engineering, 1984, 65(1):75-83. [21] KURZ W, GIOVANOLA B, TRIVEDI R. Theory of microstructural development during rapid solidification[J]. Acta Metallurgica, 1986, 34(5):823-830. [22] GÄUMANN M, BEZENÇON C, CANALIS P, et al. Single-crystal laser deposition of superalloys:Processing-microstructure maps[J]. Acta Materialia, 2001, 49(6):1051-1062. [23] GÄUMANN M, TRIVEDI R, KURZ W.Nucleation ahead of the advancing interface in directional solidification[J]. Materials Science and Engineering:A, 1997, 226-228:763-769. [24] GÄUMANN M, HENRY S, CLÉTON F, et al. Epitaxial laser metal forming:Analysis of microstructure formation[J]. Materials Science and Engineering:A, 1999, 271(1-2):232-241. [25] RAPPAZ M, DAVID S A, VITEK J M, et al. Development of microstructures in Fe-15Ni-15Cr single crystal electron beam welds[J]. Metallurgical Transactions A, 1989, 20(6):1125-1138. [26] LIU W P, DUPONT J N. Effects of melt-pool geometry on crystal growth and microstructure development in laser surface-melted superalloy single crystals[J]. Acta Materialia, 2004, 52(16):4833-4847. [27] LIU W P, DUPONT J N. Effects of substrate crystallographic orientations on crystal growth and microstructure development in laser surface-melted superalloy single crystals. Mathematical modeling of single-crystal growth in a melt pool (Part II)[J]. Acta Materialia, 2005, 53(5):1545-1558. [28] ANDERSON T D, DUPONT J N, DEBROY T. Origin of stray grain formation in single-crystal superalloy weld pools from heat transfer and fluid flow modeling[J]. Acta Materialia, 2010, 58(4):1441-1454. [29] DAVID S A, VITEK J M, RAPPAZ M, et al. Microstructure of stainless steel single-crystal electron beam welds[J]. Metallurgical Transactions A, 1990, 21(6):1753-1766. [30] RAPPAZ M, DAVID S A, VITEK J M, et al. Analysis of solidification microstructures in Fe-Ni-Cr single-crystal welds[J]. Metallurgical Transactions A, 1990, 21(6):1767-1782. [31] DAVID S A, VITEK J M, BOATNER L A, et al. Application of single crystals to achieve quantitative understanding of weld microstructures[J]. Materials Science and Technology, 1995, 11(9):939-948. [32] DAVID S A, VITEK J M, BABU S S, et al. Welding of nickel base superalloy single crystals[J]. Science and Technology of Welding and Joining, 1997, 2(2):79-88. [33] VITEK J M, DAVID S A, BOATNER L A. Microstructural development in single crystal nickel base superalloy welds[J]. Science and Technology of Welding and Joining, 1997, 2(3):109-118. [34] PARK J W, BABU S S, VITEK J M, et al. Stray grain formation in single crystal Ni-base superalloy welds[J]. Journal of Applied Physics, 2003, 94(6):4203-4209. [35] BABU S S, DAVID S A, PARK J W, et al. Joining of nickel base superalloy single crystals[J]. Science and Technology of Welding and Joining, 2004, 9(1):1-12. [36] PARK J W, VITEK J M, BABU S S, et al. Stray grain formation, thermomechanical stress and solidification cracking in single crystal nickel base superalloy welds[J]. Science and Technology of Welding and Joining, 2004, 9(6):472-482. [37] VITEK J M. The effect of welding conditions on stray grain formation in single crystal welds-theoretical analysis[J]. Acta Materialia, 2005, 53(1):53-67. [38] LIANG Y J, CHENG X, LI J, et al. Microstructural control during laser additive manufacturing of single-crystal nickel-base superalloys:New processing-microstructure maps involving powder feeding[J]. Materials & Design, 2017, 130:197-207. [39] WANG G W, LIANG J J, YANG Y H, et al. Effects of scanning speed on microstructure in laser surface-melted single crystal superalloy and theoretical analysis[J]. Journal of Materials Science & Technology, 2018, 34(8):1315-1324. [40] LIU Z Y, ZHU Q. Effect of pulse frequency on the columnar-to-equiaxed transition and microstructure formation in quasi-continuous-wave laser powder deposition of single-crystal superalloy[J]. Metallurgical and Materials Transactions A, 2021, 52(2):776-788. [41] XIAO H, CHENG M P, SONG L J. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing[J]. Journal of Materials Science & Technology, 2021, 60:216-221. [42] LIU Z Y, SHU J Y. Effect of pulse frequency on the transport phenomena and crystal growth behavior in quasi-continuous-wave laser powder deposition of single-crystal superalloy[J]. Metallurgical and Materials Transactions B, 2020, 51(6):2797-2810. [43] WANG C, LI Q L, ZHOU X, et al. Contrastive studies between laser repairing and plasma arc repairing on single-crystal Ni-based superalloy[J]. Materials, 2019, 12(7):1172. [44] CHURCHMAN C, BONIFAZ E A, RICHARDS N L. Comparison of single crystal Ni based superalloy repair by gas tungsten arc and electron beam processes[J]. Materials Science and Technology, 2011, 27(4):811-817. [45] DE SOUZA PINTO PEREIRA A, VAN HOOFF C, PEREIRA M, et al. Laser metal deposition strategies for repairing flat and notched substrates made of Ni-based single crystalline superalloys[J]. Journal of Laser Applications, 2019, 31(2):022513. [46] ROTTWINKEL B, PEREIRA A, ALFRED I, et al. Turbine blade tip single crystalline clad deposition with applied remelting passes for well oriented volume extension[J]. Journal of Laser Applications, 2017, 29(2):022310. [47] LIU Z Y, QI H. Mathematical modeling of crystal growth and microstructure formation in multi-layer and multi-track laser powder deposition of single-crystal superalloy[J]. Physics Procedia, 2014, 56:411-420. [48] LI L J, DECEUSTER A, ZHANG C B. Effect of process parameters on pulsed-laser repair of a directionally solidified superalloy[J]. Metallography, Microstructure, and Analysis, 2012, 1(2):92-98. [49] CHEN H, HUANG G S, LU Y Y, et al. Epitaxial laser deposition of single crystal Ni-based superalloy:Variation of stray grains[J]. Materials Characterization, 2019, 158:109982. [50] LIU Z Y, QI H, JIANG L. Control of crystal orientation and continuous growth through inclination of coaxial nozzle in laser powder deposition of single-crystal superalloy[J]. Journal of Materials Processing Technology, 2016, 230:177-186. [51] KAIERLE S, OVERMEYER L, ALFRED I, et al. Single-crystal turbine blade tip repair by laser cladding and remelting[J]. CIRP Journal of Manufacturing Science and Technology, 2017, 19:196-199. [52] LIU Z Y, WANG Z. Effect of substrate preset temperature on crystal growth and microstructure formation in laser powder deposition of single-crystal superalloy[J]. Journal of Materials Science & Technology, 2018, 34(11):2116-2124. [53] NIE J W, CHEN C Y, LIU L T, et al. Effect of substrate cooling on the epitaxial growth of Ni-based single-crystal superalloy fabricated by direct energy deposition[J]. Journal of Materials Science & Technology, 2021, 62:148-161. [54] LIU Z Y, SHU J Y. Control of the microstructure formation in the near-net-shape laser additive tip-remanufacturing process of single-crystal superalloy[J]. Optics & Laser Technology, 2021, 133:106537. [55] ROTTWINKEL B, NÖLKE C, KAIERLE S, et al. Laser cladding for crack repair of CMSX-4 single-crystalline turbine parts[J]. Lasers in Manufacturing and Materials Processing, 2017, 4(1):13-23. [56] CHEN H, LU Y Y, LUO D, et al. Epitaxial laser deposition of single crystal Ni-based superalloys:Repair of complex geometry[J]. Journal of Materials Processing Technology, 2020, 285:116782. [57] LIU Z Y, QI H. Effects of processing parameters on crystal growth and microstructure formation in laser powder deposition of single-crystal superalloy[J]. Journal of Materials Processing Technology, 2015, 216:19-27. [58] WANG G W, LIANG J J, ZHOU Y Z, et al. Variation of crystal orientation during epitaxial growth of dendrites by laser deposition[J]. Journal of Materials Science & Technology, 2018, 34(4):732-735. [59] WANG G W, LIANG J J, ZHOU Y Z, et al. Effects of substrate crystallographic orientations on microstructure in laser surface-melted single-crystal superalloy:Theoretical analysis[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(8):763-773. [60] WANG L, WANG N, YAO W J, et al. Effect of substrate orientation on the columnar-to-equiaxed transition in laser surface remelted single crystal superalloys[J]. Acta Materialia, 2015, 88:283-292. [61] WANG L, WANG N. Effect of substrate orientation on the formation of equiaxed stray grains in laser surface remelted single crystal superalloys:Experimental investigation[J]. Acta Materialia, 2016, 104:250-258. [62] LIU Z Y, QI H. Effects of substrate crystallographic orientations on crystal growth and microstructure formation in laser powder deposition of nickel-based superalloy[J]. Acta Materialia, 2015, 87:248-258. [63] GUO J C, RONG P, WANG L, et al. A comparable study on stray grain susceptibilities on different crystallographic planes in single crystal superalloys[J]. Acta Materialia, 2021, 205:116558. [64] GUO J C, CHEN W J, YANG R N, et al. The effect of substrate orientation on stray grain formation in the (111) plane in laser surface remelted single crystal superalloys[J]. Journal of Alloys and Compounds, 2019, 800:240-246. [65] VITEK J M, DAVID S A, BABU S S. Optimization of weld conditions and alloy composition for welding of single-crystal nickel-based superalloys[J]. Materials Science Forum, 2007, 539-543:3082-3087. [66] REED R C, TAO T, WARNKEN N. Alloys-By-Design:Application to nickel-based single crystal superalloys[J]. Acta Materialia, 2009, 57(19):5898-5913. [67] HORST O M, ADLER D, GIT P, et al. Exploring the fundamentals of Ni-based superalloy single crystal (SX) alloy design:Chemical composition vs. microstructure[J]. Materials & Design, 2020, 195:108976. [68] HORST O M, IBRAHIMKHEL S, STREITBERGER J, et al. On the influence of alloy composition on creep behavior of Ni-based single-crystal superalloys (SXs)[M]//Superalloys 2020. Cham:Springer International Publishing, 2020:60-70. [69] 张健, 王莉, 王栋, 等. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9):1077-1094. ZHANG J, WANG L, WANG D, et al. Recent progress in research and development of nickel-based single crystal superalloys[J]. Acta Metallurgica Sinica, 2019, 55(9):1077-1094(in Chinese). [70] MUKHERJEE T, DEBROY T. A digital twin for rapid qualification of 3D printed metallic components[J]. Applied Materials Today, 2019, 14:59-65. [71] RAMSPERGER M, SINGER R F, KÖRNER C. Microstructure of the nickel-base superalloy CMSX-4 fabricated by selective electron beam melting[J]. Metallurgical and Materials Transactions A, 2016, 47(3):1469-1480. [72] PARSA A, RAMSPERGER M, KOSTKA A, et al. Transmission electron microscopy of a CMSX-4 Ni-base superalloy produced by selective electron beam melting[J]. Metals, 2016, 6(11):258. [73] CATCHPOLE-SMITH S, ABOULKHAIR N, PARRY L, et al. Fractal scan strategies for selective laser melting of 'unweldable' nickel superalloys[J]. Additive Manufacturing, 2017, 15:113-122. [74] KÖRNER C, RAMSPERGER M, MEID C, et al. Microstructure and mechanical properties of CMSX-4 single crystals prepared by additive manufacturing[J]. Metallurgical and Materials Transactions A, 2018, 49(9):3781-3792. [75] BVRGER D, PARSA A B, RAMSPERGER M, et al. Creep properties of single crystal Ni-base superalloys (SX):A comparison between conventionally cast and additive manufactured CMSX-4 materials[J]. Materials Science and Engineering:A, 2019, 762:138098. [76] GOTTERBARM M R, SEIFI M, MELZER D, et al. Small scale testing of IN718 single crystals manufactured by EB-PBF[J]. Additive Manufacturing, 2020, 36:101449. [77] CHAUVET E, TASSIN C, BLANDIN J J, et al. Producing Ni-base superalloys single crystal by selective electron beam melting[J]. Scripta Materialia, 2018, 152:15-19. [78] GOTTERBARM M R, RAUSCH A M, KÖRNER C. Fabrication of single crystals through a μ-helix grain selection process during electron beam metal additive manufacturing[J]. Metals, 2020, 10(3):313. [79] YANG J J, LI F Z, PAN A Q, et al. Microstructure and grain growth direction of SRR99 single-crystal superalloy by selective laser melting[J]. Journal of Alloys and Compounds, 2019, 808:151740. [80] ROEHLING T T, WU S S Q, KHAIRALLAH S A, et al. Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing[J]. Acta Materialia, 2017, 128:197-206. [81] SHI R P, KHAIRALLAH S A, ROEHLING T T, et al. Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy[J]. Acta Materialia, 2020, 184:284-305. [82] ACHARYA R, BANSAL R, GAMBONE J J, et al. A coupled thermal, fluid flow, and solidification model for the processing of single-crystal alloy CMSX-4 through scanning laser epitaxy for turbine engine hot-section component repair (part I)[J]. Metallurgical and Materials Transactions B, 2014, 45(6):2247-2261. [83] ACHARYA R, BANSAL R, GAMBONE J J, et al. A microstructure evolution model for the processing of single-crystal alloy CMSX-4 through scanning laser epitaxy for turbine engine hot-section component repair (part II)[J]. Metallurgical and Materials Transactions B, 2014, 45(6):2279-2290. [84] BASAK A, ACHARYA R, DAS S. Additive manufacturing of single-crystal superalloy CMSX-4 through scanning laser epitaxy:Computational modeling, experimental process development, and process parameter optimization[J]. Metallurgical and Materials Transactions A, 2016, 47(8):3845-3859. [85] BASAK A, DAS S. Additive manufacturing of nickel-base superalloy rené N5 through scanning laser epitaxy (SLE)-material processing, microstructures, and microhardness properties[J]. Advanced Engineering Materials, 2017, 19(3):1600690. [86] ACHARYA R, BANSAL R, GAMBONE J J, et al. Additive manufacturing and characterization of rené 80 superalloy processed through scanning laser epitaxy for turbine engine hot-section component repair[J]. Advanced Engineering Materials, 2015, 17(7):942-950. [87] BASAK A, ACHARYA R, DAS S. Epitaxial deposition of nickel-based superalloy René 142 through scanning laser epitaxy (SLE)[J]. Additive Manufacturing, 2018, 22:665-671. [88] ROSENTHAL D. The theory of moving source of heat and its application to metal treatments[J]. Transactions of the ASME, 1946, 11:849-866. [89] WEI H L, MUKHERJEE T, ZHANG W, et al. Mechanistic models for additive manufacturing of metallic components[J]. Progress in Materials Science, 2021, 116:100703. [90] WANG G W, LIANG J J, ZHOU Y Z, et al. Prediction of dendrite orientation and stray grain distribution in laser surface-melted single crystal superalloy[J]. Journal of Materials Science & Technology, 2017, 33(5):499-506. [91] SHAMSAEI N, YADOLLAHI A, BIAN L K, et al. An overview of direct laser deposition for additive manufacturing; Part II:Mechanical behavior, process parameter optimization and control[J]. Additive Manufacturing, 2015, 8:12-35. [92] THOMPSON S M, BIAN L K, SHAMSAEI N, et al. An overview of direct laser deposition for additive manufacturing; part I:Transport phenomena, modeling and diagnostics[J]. Additive Manufacturing, 2015, 8:36-62. [93] BIDARE P, BITHARAS I, WARD R M, et al. Fluid and particle dynamics in laser powder bed fusion[J]. Acta Materialia, 2018, 142:107-120. [94] ZHANG P Y, ZHOU X, CHENG X, et al. Elucidation of bubble evolution and defect formation in directed energy deposition based on direct observation[J]. Additive Manufacturing, 2020, 32:101026. [95] DU D F, DONG A P, DA SHU, et al. Influence of static magnetic field on the microstructure of nickel-based superalloy by laser-directed energy deposition[J]. Metallurgical and Materials Transactions A, 2020, 51(7):3354-3359. [96] LI X, GAGNOUD A, FAUTRELLE Y, et al. Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field[J]. Acta Materialia, 2012, 60(8):3321-3332. [97] MIRAPEIX J, RUIZ-LOMBERA R, VALDIANDE J J, et al. Defect detection with CCD-spectrometer and photodiode-based arc-welding monitoring systems[J]. Journal of Materials Processing Technology, 2011, 211(12):2132-2139. [98] STUTZMAN C B, NASSAR A R, REUTZEL E W. Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality[J]. Additive Manufacturing, 2018, 21:333-339. [99] EVERTON S K, HIRSCH M, STRAVROULAKIS P, et al. Review of in situ process monitoring and in situ metrology for metal additive manufacturing[J]. Materials & Design, 2016, 95:431-445. [100] ZHANG K, LIU T T, LIAO W H, et al. Photodiode data collection and processing of molten pool of alumina parts produced through selective laser melting[J]. Optik, 2018, 156:487-497. [101] ROTTWINKEL B, NÖLKE C, KAIERLE S, et al. Crack repair of single crystal turbine blades using laser cladding technology[J]. Procedia CIRP, 2014, 22:263-267. [102] HUARTE-MENDICOA L, PENARANDA X, LAMIKIZ A, et al. Experimental microstructure evaluation of rene 80 in laser cladding[J]. Lasers in Manufacturing and Materials Processing, 2019, 6(3):317-331. [103] BANSAL R. Analysis and feedback control of the scanning laser epitaxy process applied to nickel-base superalloys[D]. Georgia:Georgia Institute of Technology, 2013 [104] DEBROY T, MUKHERJEE T, WEI H L, et al. Metallurgy, mechanistic models and machine learning in metal printing[J]. Nature Reviews Materials, 2021, 6(1):48-68. [105] LAMM M, SINGER R F. The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483[J]. Metallurgical and Materials Transactions A, 2007, 38(6):1177-1183. [106] LIANG Y J, LI A, CHENG X, et al. Prediction of primary dendritic arm spacing during laser rapid directional solidification of single-crystal nickel-base superalloys[J]. Journal of Alloys and Compounds, 2016, 688:133-142. [107] CI S W, LIANG J J, LI J G, et al. Prediction of primary dendrite arm spacing in pulsed laser surface melted single crystal superalloy[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4):485-494. [108] LU N N, LEI Z L, HU K, et al. Hot cracking behavior and mechanism of a third-generation Ni-based single-crystal superalloy during directed energy deposition[J]. Additive Manufacturing, 2020, 34:101228. [109] LOPEZ-GALILEA I, RUTTERT B, HE J Y, et al. Additive manufacturing of CMSX-4 Ni-base superalloy by selective laser melting:Influence of processing parameters and heat treatment[J]. Additive Manufacturing, 2019, 30:100874. [110] RAMSPERGER M, MÚJICA RONCERY L, LOPEZ-GALILEA I, et al. Solution heat treatment of the single crystal nickel-base superalloy CMSX-4 fabricated by selective electron beam melting[J]. Advanced Engineering Materials, 2015, 17(10):1486-1493. [111] NIE P L, OJO O A, LI Z G. Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy[J]. Acta Materialia, 2014, 77:85-95. [112] CI S W, LIANG J J, LI J G, et al. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming[J]. Journal of Materials Science & Technology, 2020, 45:23-34. [113] HENDERSON M B, ARRELL D, LARSSON R, et al. Nickel based superalloy welding practices for industrial gas turbine applications[J]. Science and Technology of Welding and Joining, 2004, 9(1):13-21. [114] RAPPAZ M, DREZET J M, GREMAUD M. A new hot-tearing criterion[J]. Metallurgical and Materials Transactions A, 1999, 30(2):449-455. [115] KOU S. A criterion for cracking during solidification[J]. Acta Materialia, 2015, 88:366-374. [116] LI Y, CHEN K, TAMURA N. Mechanism of heat affected zone cracking in Ni-based superalloy DZ125L fabricated by laser 3D printing technique[J]. Materials & Design, 2018, 150:171-181. [117] WANG N, MOKADEM S, RAPPAZ M, et al. Solidification cracking of superalloy single- and bi-crystals[J]. Acta Materialia, 2004, 52(11):3173-3182. [118] RONG P, WANG N, WANG L, et al. The influence of grain boundary angle on the hot cracking of single crystal superalloy DD6[J]. Journal of Alloys and Compounds, 2016, 676:181-186. [119] ZHOU Z P, HUANG L, SHANG Y J, et al. Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing[J]. Materials & Design, 2018, 160:1238-1249. [120] ZHOU Z P, LEI Q, YAN Z, et al. Effects of process parameters on microstructure and cracking susceptibility of a single crystal superalloy fabricated by directed energy deposition[J]. Materials & Design, 2021, 198:109296. [121] CHANDRA S, TAN X P, NARAYAN R L, et al. A generalised hot cracking criterion for nickel-based superalloys additively manufactured by electron beam melting[J]. Additive Manufacturing, 2021, 37:101633. [122] CHAUVET E, KONTIS P, JÄGLE E A, et al. Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron beam melting[J]. Acta Materialia, 2018, 142:82-94. [123] KONTIS P, CHAUVET E, PENG Z R, et al. Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys[J]. Acta Materialia, 2019, 177:209-221. [124] CHEN Y, LU F G, ZHANG K, et al. Investigation of dendritic growth and liquation cracking in laser melting deposited inconel 718 at different laser input angles[J]. Materials & Design, 2016, 105:133-141. [125] HARRISON N J, TODD I, MUMTAZ K. Reduction of micro-cracking in nickel superalloys processed by selective laser melting:A fundamental alloy design approach[J]. Acta Materialia, 2015, 94:59-68. [126] ZHOU X, WANG D Z, LIU X H, et al. 3D-imaging of selective laser melting defects in a Co-Cr-Mo alloy by synchrotron radiation micro-CT[J]. Acta Materialia, 2015, 98:1-16. [127] OLIVEIRA J P, LALONDE A D, MA J. Processing parameters in laser powder bed fusion metal additive manufacturing[J]. Materials & Design, 2020, 193:108762. [128] CI S W, LIANG J J, LI J G, et al. Microstructure and stress-rupture property of DD32 nickel-based single crystal superalloy fabricated by additive manufacturing[J]. Journal of Alloys and Compounds, 2021, 854:157180. [129] ZHANG P Y, ZHOU X, WANG X D, et al. Study on the microstructural degradation and rejuvenation heat treatment of directionally solidified turbine blades[J]. Journal of Alloys and Compounds, 2020, 829:154474. [130] CHEN K, HUANG R Q, LI Y, et al. Rafting-enabled recovery avoids recrystallization in 3D-printing-repaired single-crystal superalloys[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(12):e1907164. [131] GASSER A, BACKES G, KELBASSA I, et al. Laser additive manufacturing[J]. Laser Technik Journal, 2010, 7(2):58-63. [132] ASCHENBRUCK J, ADAMCZUK R, SEUME J R. Recent progress in turbine blade and compressor blisk regeneration[J]. Procedia CIRP, 2014, 22:256-262. |
[1] | 李涤尘, 鲁中良, 田小永, 张航, 杨春成, 曹毅, 苗恺. 增材制造——面向航空航天制造的变革性技术[J]. 航空学报, 2022, 43(4): 525387-525387. |
[2] | 姚燕生, 周瑞根, 张成林, 梅涛, 吴敏. 增材制造复杂金属构件表面抛光技术[J]. 航空学报, 2022, 43(4): 525202-525202. |
[3] | 李汇, 李光先, 高瑞麟, 金鑫, 刘璐, 李朝将, Songlin DING. 不锈钢增材制造件后处理工艺研究进展[J]. 航空学报, 2022, 43(4): 525847-525847. |
[4] | 李志强, 陈玮. 高能束流加工技术在航空领域的应用进展[J]. 航空学报, 2022, 43(4): 526882-526882. |
[5] | 王天帅, 贺小帆, 王金宇, 李玉海. 基于双峰对数正态分布模型的DED-TA15钛合金DFR值估计方法[J]. 航空学报, 2022, 43(3): 225013-225013. |
[6] | 郭怡东, 马玉娥, 李佩谣. 增材制造钛合金微桁架夹芯板低速冲击响应[J]. 航空学报, 2021, 42(2): 423820-423820. |
[7] | 郭鑫鑫, 陈哲涵. 激光增材制造过程数值仿真技术综述[J]. 航空学报, 2021, 42(10): 524227-524227. |
[8] | 袁经纬, 李卓, 汤海波, 程序. 热处理对激光增材制造TC4合金耐蚀性及室温压缩蠕变性能的影响[J]. 航空学报, 2021, 42(10): 524390-524390. |
[9] | 师彬彬, 陈哲涵. 基于图像特征融合的粉末床缺陷检测方法[J]. 航空学报, 2021, 42(10): 524430-524430. |
[10] | 黄杰光, 齐乐华, 罗俊. 金属微滴水平喷射关键参数调控机制及试验[J]. 航空学报, 2021, 42(10): 524637-524637. |
[11] | 曹龙超, 周奇, 韩远飞, 宋波, 聂振国, 熊异, 夏凉. 激光选区熔化增材制造缺陷智能监测与过程控制综述[J]. 航空学报, 2021, 42(10): 524790-524790. |
[12] | 顾冬冬, 张晗, 刘刚, 杨碧琦. 稀土改性高强铝微桁架激光增材制造工艺调控[J]. 航空学报, 2021, 42(10): 524868-524868. |
[13] | 张纪奎, 孔祥艺, 马少俊, 刘栋, 王新波, 冯军, 王华明. 激光增材制造高强高韧TC11钛合金力学性能及航空主承力结构应用分析[J]. 航空学报, 2021, 42(10): 525430-525430. |
[14] | 高航, 李世宠, 付有志, 魏海波, 彭灿, 王宣平. 金属增材制造格栅零件磨粒流抛光[J]. 航空学报, 2017, 38(10): 421210-421210. |
[15] | 朱伟军, 李涤尘, 任科, 张征宇. 基于3D打印的舵面可调实用化飞机风洞模型的设计与试验[J]. 航空学报, 2014, 35(2): 400-407. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
访问总数:6658907今日访问:1341版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学