1 |
杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1): 1-10.
|
|
DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1): 1-10 (in Chinese).
|
2 |
赵天, 李营, 张超, 等. 高性能航空复合材料结构的关键力学问题研究进展[J]. 航空学报, 2022, 43(6): 56-98.
|
|
ZHAO T, LI Y, ZHANG C, et al. Fundamental mechanical problems in high-performance aerospace composite structures: state-of-art review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 56-98 (in Chinese).
|
3 |
KUMAR N J, BABU P R, PANDU R. Investigations on buckling behaviour of laminated curved composite stiffened panels[J]. Applied Composite Materials, 2014, 21(2): 359-376.
|
4 |
GENG X L, JI F F, WANG J, et al. Experimental and numerical investigations of compression stability of stiffened composite panel with ply interleaving[J]. Journal of Composite Materials, 2017, 51(26): 002199831769239.
|
5 |
曹勇, 张超. 薄层复合材料冲击损伤行为研究进展[J]. 航空学报, 2022, 43(6): 525323.
|
|
CAO Y, ZHANG C. Impact damage behavior of thin-ply composites: A review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525323 (in Chinese).
|
6 |
崔德刚. 浅谈民用大飞机结构技术的发展[J]. 航空学报, 2008, 29(3): 573-582.
|
|
CUI D G. Structure technology development of large commercial aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 573-582 (in Chinese).
|
7 |
GREENHALGH E, MEEKS C, CLARKE A, et al. The effect of defects on the performance of post-buckled CFRP stringer-stiffened panels[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(7): 623-633.
|
8 |
GREENHALGH E, SINGH S, HUGHES D, et al. Impact damage resistance and tolerance of stringer stiffened composite structures[J]. Plastics, Rubber and Composites, 1999, 28(5): 228-251.
|
9 |
MALHOTRA A, GUILD F J, PAVIER M J. Edge impact to composite laminates: experiments and simulations[J]. Journal of Materials Science, 2008, 43(20): 6661-6667.
|
10 |
TAN R M, GUAN Z D, SUN W, et al. Experiment investigation on impact damage and influences on compression behaviors of single T-stiffened composite panels[J]. Composite Structures, 2018, 203: 486-497.
|
11 |
TAN R M, XU J F, GUAN Z D, et al. Experimental study on effect of impact locations on damage formation and compression behavior of stiffened composite panels with L-shaped stiffener[J]. Thin-Walled Structures, 2020, 150: 106707.
|
12 |
FENG Y, ZHANG H Y, TAN X F, et al. Effect of impact damage positions on the buckling and post-buckling behaviors of stiffened composite panel[J]. Composite Structures, 2016, 155: 184-196.
|
13 |
LI N, CHEN P H. Experimental investigation on edge impact damage and Compression-After-Impact (CAI) behavior of stiffened composite panels[J]. Composite Structures, 2016, 138: 134-150.
|
14 |
SEBASTIAN C, PATTERSON E A. Calibration of a digital image correlation system[J]. Experimental Techniques, 2015, 39(1): 21-29.
|
15 |
KOLANU N R, PRAKASH S S, RAMJI M. Experimental study on compressive behavior of GFRP stiffened panels using digital image correlation[J]. Ocean Engineering, 2016, 114: 290-302.
|
16 |
阳奥, 陈普会, 孔斌, 等. 数字图像相关技术在复合材料加筋曲板压缩试验中的应用[J]. 复合材料学报, 2020, 37(10): 2439-2451.
|
|
YANG A, CHEN P H, KONG B, et al. Application of digital image correlation technology in compression test of stringer stiffened composite curved panels[J]. Acta Materiae Compositae Sinica, 2020, 37(10):2439-2451 (in Chinese).
|
17 |
任涛, 彭昂, 吴大可, 等. 冲击位置对复合材料加筋板冲击后压缩行为影响试验[J]. 复合材料学报, 2022, 39(2): 788-801.
|
|
REN T, PENG A, WU D K, et al. Experimental study on the influence of impact positions on compression-after-impact behavior of composite stiffened panels[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 788-801 (in Chinese).
|
18 |
LI N, CHEN P H. Failure prediction of T-stiffened composite panels subjected to compression after edge impact[J]. Composite Structures, 2017, 162: 210-226.
|
19 |
LI N, CHEN P H. Prediction of Compression-After-Edge-Impact (CAEI) behaviour in composite panel stiffened with I-shaped stiffeners[J]. Composites Part B: Engineering, 2017, 110: 402-419.
|
20 |
OUYANG T, BAO R, SUN W, et al. A fast and efficient numerical prediction of compression after impact (CAI) strength of composite laminates and structures[J]. Thin-Walled Structures, 2020, 148: 106588.
|
21 |
TSAI S W. A general theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5(1): 58-80.
|
22 |
CHEN X M, SUN X S, CHEN P H, et al. Rationalized improvement of Tsai⁃Wu failure criterion considering different failure modes of composite materials[J]. Composite Structures, 2021, 256: 113120.
|
23 |
PINHO S, DARVIZEH R, ROBINSON P, et al. Material and structural response of polymer-matrix fibre-reinforced composites[J]. Journal of Composite Materials, 2012, 46(19-20): 2313-2341.
|
24 |
LINDE P, DE BOER H. Modelling of inter-rivet buckling of hybrid composites[J]. Composite Structures, 2006, 73(2): 221-228.
|
25 |
杨钧超, 陈向明, 邹鹏, 等. 复合材料层合板剪切稳定性试验及强度预测[J]. 复合材料学报, 2023, 40(3): 1707-1717.
|
|
YANG J C, CHEN X M, ZOU P, et al. Shear stability test and strength prediction of composite laminates[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1707-1717 (in Chinese).
|
26 |
CHEN X M, SUN X S, CHEN P H, et al. A delamination failure criterion considering the effects of through-thickness compression on the interlaminar shear failure of composite laminates[J]. Composite Structures, 2020, 241: 112121.
|
27 |
REEDER J R. An evaluation of mixed-mode delamination failure criteria[R]. NASA Technical Memorandum 104210, 1992.
|
28 |
WANG B W, CHEN X M, WANG W Z, et al. Post-buckling failure analysis of composite stiffened panels considering the mode III fracture[J]. Journal of Composite Materials, 2022, 56(3): 1-13.
|
29 |
REITINGER R, RAMM E. Buckling and imperfection sensitivity in the optimization of shell structures[J]. Thin-Walled Structures, 1995, 23(1-4): 159-177.
|