1 |
BEYER C, FIGUEROA D. Design and analysis of lattice structures for additive manufacturing[J]. Journal of Manufacturing Science and Engineering, 2016, 138(12):121014.
|
2 |
SOUZA J, GROßMANN A, MITTELSTEDT C. Micromechanical analysis of the effective properties of lattice structures in additive manufacturing[J]. Additive Manufacturing, 2018, 23: 53-69.
|
3 |
GROßMANN A, GOSMANN J, MITTELSTEDT C. Lightweight lattice structures in selective laser melting: Design, fabrication and mechanical properties[J]. Materials Science and Engineering: A, 2019, 766: 138356.
|
4 |
GAO C, WANG Z, XIAO Z, et al. Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: Microstructural, interfacial, and mechanical properties[J]. Journal of Materials Processing Technology, 2020, 281: 116618.
|
5 |
MANDAL A, MAITI R, CHAKRABORTY M, et al. Effect of TiB2 particles on aging response of Al-4Cu alloy[J]. Materials Science and Engineering: A, 2004, 386(1-2): 296-300.
|
6 |
CHEN J, YU W W, ZUO Z Y, et al. Effects of in-situ TiB2 particles on machinability and surface integrity in milling of TiB2/2024 and TiB2/7075 Al composites[J]. Chinese Journal of Aeronautics, 2021, 34(6): 110-124.
|
7 |
MEENASHISUNDARAM G K, GUPTA M. Synthesis and characterization of high performance low volume fraction TiC reinforced Mg nanocomposites targeting biocompatible/structural applications[J]. Materials Science and Engineering: A, 2015, 627: 306-315.
|
8 |
KIM S H, CHO Y H, LEE J M. Particle distribution and hot workability of in situ synthesized Al-TiCp composite[J]. Metallurgical and Materials Transactions A, 2014, 45(6): 2873-2884.
|
9 |
TJONG S C, MA Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites[J]. Materials Science and Engineering: R: Reports, 2000, 29(3-4): 49-113.
|
10 |
DAVID R S J, DINAHARAN I, VIBIN P S, et al. Microstructure and mechanical characterization of in situ synthesized AA6061/(TiB2+Al2O3) hybrid aluminum matrix composites[J]. Journal of Alloys and Compounds, 2018, 740: 529-535.
|
11 |
LI H, WANG X, CHAI L, et al. Microstructure and mechanical properties of an in-situ TiB2/Al-Zn-Mg-Cu-Zr composite fabricated by Melt-SHS process[J]. Materials Science and Engineering: A, 2018, 720: 60-68.
|
12 |
JIN P, LIU Y, LI F, et al. Realization of structural evolution in grain boundary, solute redistribution and improved mechanical properties by adding TiCnps in wire and arc additive manufacturing 2219 aluminium alloy[J]. Journal of Materials Research and Technology, 2021, 11: 834-848.
|
13 |
CHEN Y, YANG C, FAN C, et al. Grain refinement of additive manufactured Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy by the addition of La2O3 [J]. Materials Letters, 2020, 275: 128170.
|
14 |
KENNEDY J R, DAVIS A E, CABALLERO A E, et al. The potential for grain refinement of Wire-Arc Additive Manufactured (WAAM) Ti-6Al-4V by ZrN and TiN inoculation[J]. Additive Manufacturing, 2021, 40: 101928.
|
15 |
OROPEZA D, HOFMANN D C, WILLIAMS K, et al. Welding and additive manufacturing with nanoparticle-enhanced aluminum 7075 wire[J]. Journal of Alloys and Compounds, 2020, 834: 154987.
|
16 |
代轶励, 余圣甫, 史玉升, 等. 电弧熔丝增材制造460 MPa级建筑钢十向节点用药芯丝材的开发及应用[J]. 机械工程材料, 2019, 43(10): 24-29, 52.
|
|
DAI Y L, YU S F, SHI Y S, et al. Development and application of flux cored wire for wire-arc Additive manufacturing of 460MPa grade building ten-directional steel poin[J]. Materials for Mechanical Engineering, 2019, 43(10): 24-29, 52 (in Chinese).
|
17 |
宋守亮, 余圣甫, 史玉升, 等. 舰船艉轴架电弧熔丝3D打印用金属型药芯丝材的研制[J]. 机械工程材料, 2019, 43(1): 40-44, 49.
|
|
SONG S L, YU S F, SHI Y S, et al. Development of metal type flux-cored wire for arc fusion 3D printing marine propeller bracket[J]. Materials for Mechanical Engineering, 2019, 43(1): 40-44, 49 (in Chinese).
|
18 |
梁英敎, 车荫昌. 无机物热力学数据手册[M]. 沈阳: 东北大学出版社, 1993: 49-55.
|
|
LIANG Y J, CHE Y C. Handbook of inorganic thermodynamics data[M]. Shenyang: Northeastern University Press, 1993: 49-55 (in Chinese).
|
19 |
宋月鹏, 李江涛, 裴军, 等. NiO/Al体系绝热温度的数值计算与试验验证[J]. 复合材料学报, 2010, 27(3): 134-137.
|
|
SONG Y P, LI J T, PEI J, et al. Adiabatic temperature calculation and verification of NiO/Al aluminothermic system by computer simulation[J]. Acta Materiae Compositae Sinica, 2010, 27(3): 134-137 (in Chinese).
|
20 |
BAI J Y, YANG C L, LIN S B, et al. Mechanical properties of 2219-Al components produced by additive manufacturing with TIG[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(1): 479-485.
|
21 |
LIU G, XIONG J, TANG L. Microstructure and mechanical properties of 2219 aluminum alloy fabricated by double-electrode gas metal arc additive manufacturing[J]. Additive Manufacturing, 2020, 35: 101375.
|
22 |
NAJARIAN A R, EMADI R, HAMZEH M. Fabrication of as-cast Al matrix composite reinforced by Al2O3/Al3Ni hybrid particles via in-situ reaction and evaluation of its mechanical properties[J]. Materials Science and Engineering: B, 2018, 231: 57-65.
|