[1] 卢秉恒. 增材制造技术:现状与未来[J]. 中国机械工程, 2020, 31(1):19-23. LU B H. Additive manufacturing-Current situation and future[J]. China Mechanical Engineering, 2020, 31(1):19-23(in Chinese). [2] 熊云龙, 娄延春, 刘新峰. 不锈钢材料研究的新进展[J]. 热加工工艺, 2005, 34(5):51-53. XIONG Y L, LOU Y C, LIU X F. New progress of stainless steel[J]. Hot Working Technology, 2005, 34(5):51-53(in Chinese). [3] 周建涛. 硬质合金刀具车削半奥氏体沉淀硬化不锈钢的磨损机理研究[D]. 济南:山东大学, 2010:1-2. ZHOU J T. Wear mechanisms of cemented carbide tools in turning of semi-austenitic precipitation hardening stainless steel[D]. Jinan:Shandong University, 2010:1-2(in Chinese). [4] 张国平. 不锈钢切削加工[J]. 现代机械, 2013(1):65-67, 70. ZHANG G P. Stainless steel cutting processing[J]. Modern Machinery, 2013(1):65-67, 70(in Chinese). [5] 周芳娟. 304不锈钢切削加工表面特性的研究[D]. 武汉:华中科技大学, 2014:1-2. ZHOU F J. Research on machined surface characteristics of304Stainless steel[D]. Wuhan:Huazhong University of Science and Technology, 2014:1-2(in Chinese). [6] 章媛洁, 宋波, 赵晓, 等. 激光选区熔化增材与机加工复合制造AISI 420不锈钢:表面粗糙度与残余应力演变规律研究[J]. 机械工程学报, 2018, 54(13):170-178. ZHANG Y J, SONG B, ZHAO X, et al. Selective laser melting and subtractive hybrid manufacture AISI420 stainless steel:Evolution on surface roughness and residual stress[J]. Journal of Mechanical Engineering, 2018, 54(13):170-178(in Chinese). [7] 方金祥. 激光熔覆成形马氏体不锈钢应力演化及调控机制[D]. 哈尔滨:哈尔滨工业大学, 2016:2-3. FANG J X. Evolution and control of stress during laser cladding forming of martensitic stainless steel[D]. Harbin:Harbin Institute of Technology, 2016:2-3(in Chinese). [8] EDWARDS P, RAMULU M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V[J]. Materials Science and Engineering:A, 2014, 598:327-337. [9] ZHU J H, ZHOU H, WANG C, et al. A review of topology optimization for additive manufacturing:Status and challenges[J]. Chinese Journal of Aeronautics, 2021, 34(1):91-110. [10] 耿海滨, 熊江涛, 黄丹, 等. 丝材电弧增材制造技术研究现状与趋势[J]. 焊接, 2015(11):17-21, 69. GENG H B, XIONG J T, HUANG D, et al. Research status and trends of wire and arc additive manufacturing technology[J]. Welding & Joining, 2015(11):17-21, 69(in Chinese). [11] 熊江涛, 耿海滨, 林鑫, 等. 电弧增材制造研究现状及在航空制造中应用前景[J]. 航空制造技术, 2015, 58(增刊2):80-85. XIONG J T, GENG H B, LIN X, et al. Research status of wire and arc additive manufacture and its application in aeronautical manufacturing[J]. Aeronautical Manufacturing Technology, 2015, 58(Sup.2):80-85(in Chinese). [12] PARVARESH B, SALEHAN R, MIRESMAEILI R. Investigating isotropy of mechanical and wear properties in as-deposited and inter-layer cold worked specimens manufactured by wire arc additive manufacturing[J]. Metals and Materials International, 2021, 27(1):92-105. [13] American Society for Testing and Materials. Standard specification for chromium and chromium-nickel stainless steel plate, sheet, and strip for pressure vessels and for general applications:ASTM-A240/A240Ma-2002[S]. West Conshohocken:ASTM International, 2002. [14] KONG D C, NI X Q, DONG C F, et al. Anisotropy in the microstructure and mechanical property for the bulk and porous 316L stainless steel fabricated via selective laser melting[J]. Materials Letters, 2019, 235:1-5. [15] 刘奋成, 贺立华, 黄春平, 等. 316L不锈钢电弧堆焊快速成形工艺及组织性能研究[J]. 南昌航空大学学报(自然科学版), 2013, 27(4):1-5. LIU F C, HE L H, HUANG C P, et al. Microstructure, mechanical properties and processing study of arc overlying welding rapid forming of 316L stainless steel[J]. Journal of Nanchang Hangkong University (Natural Sciences), 2013, 27(4):1-5(in Chinese). [16] CHEN X H, LI J, CHENG X, et al. Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing[J]. Materials Science and Engineering:A, 2017, 703:567-577. [17] 周斌, 张婷, 林峰, 等. 电子束选区熔化成形Ti6Al4V和316L不锈钢叶轮体微观组织和力学性能的研究[J]. 稀有金属材料与工程, 2018, 47(1):175-180. ZHOU B, ZHANG T, LIN F, et al. Microstructures and mechanical properties of Ti6Al4V and 316L stainless steel impeller body made by electron beam selective melting[J]. Rare Metal Materials and Engineering, 2018, 47(1):175-180(in Chinese). [18] KARLSSON J, SNIS A, ENGQVIST H, et al. Characteri-zation and comparison of materials produced by electron beam melting (EBM) of two different Ti-6Al-4V powder fractions[J]. Journal of Materials Processing Tech, 2013, 213(12):2109-2118. [19] 王忻凯, 王乾俸. 增材制造及其航空航天领域的发展现状[J]. 中小企业管理与科技, 2015(12):230-231. WANG X K, WANG Q F. Additive manufacturing and its development status in aerospace field[J]. Management & Technology of SME, 2015(12):230-231(in Chinese). [20] 席明哲, 高士友. 激光快速成形Rene 80高温合金组织及裂纹形成机理[J]. 中国激光, 2012, 39(8):0803008. XI M Z, GAO S Y. Microstructures and mechanism of cracks forming of Rene 80 high-temperature alloy fabricated by laser rapid forming process[J]. Chinese Journal of Lasers, 2012, 39(8):0803008(in Chinese). [21] 宋建丽, 邓琦林, 葛志军, 等. 镍基合金激光快速成形裂纹控制技术[J]. 上海交通大学学报, 2006, 40(3):548-552. SONG J L, DENG Q L, GE Z J, et al. The cracking control technology of laser rapid forming nickel-based alloys[J]. Journal of Shanghai Jiao Tong University, 2006, 40(3):548-552(in Chinese). [22] 杨健, 黄卫东, 陈静, 等. 激光快速成形金属零件的残余应力[J]. 应用激光, 2004, 24(1):5-8. YANG J, HUANG W D, CHEN J, et al. Residual stress on laser rapid forming metal part[J]. Applied Laser, 2004, 24(1):5-8(in Chinese). [23] WITTIG B, ZINKE M, JVTTNER S. Influence of arc energy and filler metal composition on the microstructure in wire arc additive manufacturing of duplex stainless steels[J]. Welding in the World, 2021, 65(1):47-56. [24] 张炼. 316不锈钢TIG电弧增材制造工艺及性能研究[D]. 大连:大连理工大学, 2019:9-10. ZHANG L. Research on process and performance of 316 stainless steel TIG arc additive manufacturing[D]. Dalian:Dalian University of Technology, 2019:9-10(in Chinese). [25] XU X, MI G Y, LUO Y Q, et al. Morphologies, microstructures, and mechanical properties of samples produced using laser metal deposition with 316 L stainless steel wire[J]. Optics and Lasers in Engineering, 2017, 94:1-11. [26] 李旭文, 宋刚, 张兆栋, 等. 激光诱导电弧复合增材制造316不锈钢的组织和性能[J]. 中国激光, 2019, 46(12):1202006. LI X W, SONG G, ZHANG Z D, et al. Microstructure and properties of 316 stainless steel produced by laser-induced arc hybrid additive manufacturing[J]. Chinese Journal of Lasers, 2019, 46(12):1202006(in Chinese). [27] 齐海波, 林峰, 颜永年, 等. 316L不锈钢粉末的电子束选区熔化成形[J]. 清华大学学报(自然科学版), 2007, 47(11):1941-1944. QI H B, LIN F, YAN Y N, et al. Electron beam selective melting of 316L stainless steel powder[J]. Journal of Tsinghua University (Science and Technology), 2007, 47(11):1941-1944(in Chinese). [28] 郭超, 林峰, 葛文君. 电子束选区熔化成形316L不锈钢的工艺研究[J]. 机械工程学报, 2014, 50(21):152-158. GUO C, LIN F, GE W J. Study on the fabrication process of 316L stainless steel via electron beam selective melting[J]. Journal of Mechanical Engineering, 2014, 50(21):152-158(in Chinese). [29] 任香会, 张文杰, 易耀勇, 等. ER308L不锈钢丝材微束等离子弧增材制造组织与性能分析[J]. 沈阳航空航天大学学报, 2019, 36(6):27-32. REN X H, ZHANG W J, YI Y Y, et al. Microstructure and mechanical properties of mateirals fabricated by micro-plasma arc additive manufacturing from ER308L wire[J]. Journal of Shenyang Aerospace University, 2019, 36(6):27-32(in Chinese). [30] WANG Y D, TANG H B, FANG Y L, et al. Microstructure and mechanical properties of hybrid fabricated 1Cr12Ni2WMoVNb steel by laser melting deposition[J]. Chinese Journal of Aeronautics, 2013, 26(2):481-486. [31] BENARJI K, RAVI KUMAR Y, JINOOP A N, et al. Effect of heat-treatment on the microstructure, mechanical properties and corrosion behaviour of SS 316 structures built by laser directed energy deposition based additive manufacturing[J]. Metals and Materials International, 2021, 27(3):488-499. [32] 赵晓. 激光选区熔化成形模具钢材料的组织与性能演变基础研究[D]. 武汉:华中科技大学, 2016:140-142. ZHAO X. Fundamental research on the microstructure and properties evolution of tool steels fabricated by selective laser melting[D]. Wuhan:Huazhong University of Science and Technology, 2016:140-142(in Chinese). [33] 程灵钰, 朱小刚, 刘正武, 等. 热处理对激光选区熔化成形316L不锈钢组织和力学性能的影响[J]. 材料热处理学报, 2020, 41(7):80-86. CHENG L Y, ZHU X G, LIU Z W, et al. Effect of heat treatment on microstructure and mechanical properties of 316L stainless steel prepared by selective laser melting[J]. Transactions of Materials and Heat Treatment, 2020, 41(7):80-86(in Chinese). [34] 边培莹. 热处理工艺对316L不锈钢粉末激光选区熔化成形的残余应力及组织的影响[J]. 材料热处理学报, 2019, 40(4):90-97. BIAN P Y. Effect of heat treatment on residual stress and microstructure of 316L stainless steel powder formed by selective laser melting[J]. Transactions of Materials and Heat Treatment, 2019, 40(4):90-97(in Chinese). [35] 徐亮, 杨可, 王秋雨, 等. 热处理对电弧增材制造316L不锈钢组织和性能的影响[J]. 电焊机, 2020, 50(10):29-34, 126. XU L, YANG K, WANG Q Y, et al. Effect of heat treatment on microstructure properties of austenitic stainless steel 316L using arc additive manufacturing[J]. Electric Welding Machine, 2020, 50(10):29-34, 126(in Chinese). [36] 王智勇, 张毅, 王鑫, 等. 热处理工艺对G30钢组织和性能的影响[J]. 材料热处理学报, 2018, 39(7):92-98. WANG Z Y, ZHANG Y, WANG X, et al. Effect of heat treatment on microstructure and properties of G30 steel[J]. Transactions of Materials and Heat Treatment, 2018, 39(7):92-98(in Chinese). [37] 王臣, 赵坤. 不锈钢的机械加工特性和方法探讨[J]. 装备制造技术, 2011(6):193-194. WANG C, ZHAO K. Discuss mechanical processing properties and methods of stainless steel[J]. Equipment Manufacturing Technology, 2011(6):193-194(in Chinese). [38] 徐林红. 难加工材料可加工性分析方法的研究[D]. 武汉:武汉理工大学, 2010. XU L H. Research on the machinability evaluation method for difficult-to-cut materials[D]. Wuhan:Wuhan University of Technology, 2010(in Chinese). [39] VENKATA RAO R. Machinability evaluation of work materials using a combined multiple attribute decision-making method[J]. The International Journal of Advanced Manufacturing Technology, 2006, 28(3-4):221-227. [40] RAO R V, GANDHI O P. Digraph and matrix methods for the machinability evaluation of work materials[J]. International Journal of Machine Tools and Manufacture, 2002, 42(3):321-330. [41] BOUBEKRI N, RODRIGUEZ J, ASFOUR S. Development of an aggregate indicator to assess the machinability of steels[J]. Journal of Materials Processing Technology, 2003, 134(2):159-165. [42] ENACHE S, STRÂJESCU E, OPRAN C, et al. Mathematical model for the establishment of the materials machinability[J]. CIRP Annals, 1995, 44(1):79-82. [43] LI G X, YI S, WEN C E, et al. Wear mechanism and modeling of tribological behavior of polycrystalline diamond tools when cutting Ti6Al4V[J]. Journal of Manufacturing Science and Engineering, 2018, 140(12):121011. [44] LI G X, YI S, SUN S J, et al. Wear mechanisms and performance of abrasively ground polycrystalline diamond tools of different diamond grains in machining titanium alloy[J]. Journal of Manufacturing Processes, 2017, 29:320-331. [45] ZHANG P R, DU J, ZHANG J J, et al. A theoretical model to study the cutting force characteristics in remanufacturing turning of laser cladded coatings[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(3-4):757-769. [46] 白海清, 沈钰, 安熠蔚, 等. 304不锈钢与其激光熔覆件小孔钻削的对比研究[J]. 应用激光, 2020, 40(1):1-6. BAI H Q, SHEN Y, AN Y W, et al. Comparative study on small hole drilling of 304 stainless steel and its laser cladding parts[J]. Applied Laser, 2020, 40(1):1-6(in Chinese). [47] 白海清, 沈钰, 舒林森, 等. 304不锈钢激光熔覆件的制备及小孔钻削实验研究[J]. 热加工工艺, 2020, 49(10):84-88, 91. BAI H Q, SHEN Y, SHU L S, et al. Preparation of laser cladding 304 stainless steel and experimental study on small hole drilling[J]. Hot Working Technology, 2020, 49(10):84-88, 91(in Chinese). [48] 高飞, 白海清, 安熠蔚, 等. 316L不锈钢增材成型件小孔钻削试验研究[J]. 现代制造工程, 2019(9):48-53, 36. GAO F, BAI H Q, AN Y W, et al. Experimental research on small hole drilling of 316L stainless steel additive forming parts[J]. Modern Manufacturing Engineering, 2019(9):48-53, 36(in Chinese). [49] 沈钰. 不锈钢激光熔覆件的小直径孔钻削试验研究[D]. 汉中:陕西理工大学, 2019:4-5. SHEN Y. Experimental research on small diameter hole drilling of stainless steel laser cladding[D]. Hanzhong:Shaanxi University of Technology, 2019:4-5(in Chinese). [50] 安熠蔚, 白海清, 鲍骏, 等. 316L不锈钢激光熔覆成形件铣削表面质量分析[J]. 机床与液压, 2021, 49(22):61-66. AN Y W, BAI H Q, BAO J, et al. Analysis on milling surface quality of 316L stainless steel laser cladding forming parts[J]. Machine Tool & Hydraulics, 2021, 49(22):61-66(in Chinese). [51] WANG G R, CHU F, TAO S Y, et al. Optimization design for throttle valve of managed pressure drilling based on CFD erosion simulation and response surface methodology[J]. Wear, 2015, 338-339:114-121. [52] RAJESWARI B, AMIRTHAGADESWARAN K S. Experimental investigation of machinability characteristics and multi-response optimization of end milling in aluminium composites using RSM based grey relational analysis[J]. Measurement, 2017, 105:78-86. [53] 郭鹏. 激光增材制造不锈钢的力学性能和铣削性能研究[D]. 济南:山东大学, 2017:69-70. GUO P. Study on mechanical properties and milling performance of stainless steel manufactured by laser additive manufacturing[D]. Jinan:Shandong University, 2017:69-70(in Chinese). [54] MA M M, WANG Z M, GAO M, et al. Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel[J]. Journal of Materials Processing Technology, 2015, 215:142-150. [55] TRIVEDI R, SEETHARAMAN V, ESHELMAN M A. The effects of interface kinetics anisotropy on the growth direction of cellular microstructures[J]. Metallurgical Transactions A, 1991, 22(2):585-593. [56] OH J W, LOUCA L A, CHOO Y S. Strain rate effects on the response of stainless steel corrugated firewalls subjected to hydrocarbon explosions[J]. Journal of Constructional Steel Research, 2004, 60(1):1-29. [57] KAYNAK Y, KITAY O. The effect of post-processing operations on surface characteristics of 316L stainless steel produced by selective laser melting[J]. Additive Manufacturing, 2019, 26:84-93. [58] YAMAGUCHI H, FERGANI O, WU P Y. Modification using magnetic field-assisted finishing of the surface roughness and residual stress of additively manufactured components[J]. CIRP Annals, 2017, 66(1):305-308. [59] CHOMIENNE V, VALIORGUE F, RECH J, et al. Influence of ball burnishing on residual stress profile of a 15-5PH stainless steel[J]. CIRP Journal of Manufacturing Science and Technology, 2016, 13:90-96. [60] LI G X, RAHIM M Z, DING S L, et al. Performance and wear analysis of polycrystalline diamond (PCD) tools manufactured with different methods in turning titanium alloy Ti-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(1-4):825-841. [61] TAPOGLOU N, CLULOW J. Investigation of hybrid manufacturing of stainless steel 316L components using direct energy deposition[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2021, 235(10):1633-1643. [62] GONG Y D, LI P F. Analysis of tool wear performance and surface quality in post milling of additive manufactured 316L stainless steel[J]. Journal of Mechanical Science and Technology, 2019, 33(5):2387-2395. [63] BAI Q, WU B Z, QIU X L, et al. Experimental study on additive/subtractive hybrid manufacturing of 6511 steel:Process optimization and machining characteristics[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(5-6):1389-1398. [64] TÖNSHOFF H K, ARENDT C, AMOR R B. Cutting of hardened steel[J]. CIRP Annals, 2000, 49(2):547-566. [65] FANG J X, DONG S Y, WANG Y J, et al. The effects of solid-state phase transformation upon stress evolution in laser metal powder deposition[J]. Materials & Design, 2015, 87:807-814. |