[1] WU Z H. A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial-, radial-, and mixed-flow types: NACA TN 2604[R]. Washington, D.C.: NASA, 1952.
[2] 蒋浩兴. 国外发展风扇/压气机设计体系的一些经验和启示[J]. 航空发动机, 2001(2): 45-51. JIANG H X. The experiences and enlightenments of foreign fan/compressor design system development[J]. Aeroengine, 2001(2): 45-51 (in Chinese).
[3] PETROVIC M V, WIEDERMANN A. Fully coupled through-flow method for industrial gas turbine analysis: GT2015-42111[R]. New York: ASME, 2015.
[4] NOVAK R A. Streamline curvature computing procedures for fluid-flow problems[J]. Journal of Engineering for Power, 1967, 89(4): 478-490.
[5] MARSH H. A digital computer program for the through-flow fluid mechanics in an arbitrary turbomachine using a matrix method: RM 3509[R]. London: National Gas Turbine Establishment, 1968.
[6] SPURR A. The prediction of 3D transonic flow in turbomachinery using a combined throughflow and blade-to-blade time marching method[J]. International Journal of Heat and Fluid Flow, 1980, 2(4): 189-199.
[7] DAWES W N. Toward improved throughflow capability: The use of three-dimensional viscous flow solvers in a multistage environment[J]. Journal of Turbomachinery, 1992, 114(1): 8-17.
[8] YAO Z, HIRSCH C. Throughflow model using 3D Euler or Navier-Stokes solver[J]. VDI Berichte, 1995, 1185: 51.
[9] DAMLE S V, DANG T Q, REDDY D R. Throughflow method for turbomachines applicable for all flow regimes[J]. Journal of Turbomachinery, 1997, 119(2): 256-262.
[10] DAMLE S V. Throughflow method for turbomachines using Euler solvers: AIAA-1996-0010[R]. Reston, VA: AIAA, 1996.
[11] BARALON S, ERIKSSON L E, HÅLL U. Validation of a throughflow time-marching finite-volume solver for transonic compressors: 98-GT-47[R]. New York: ASME, 1998.
[12] BARALON S, HÅLL U, ERIKSSON L E. Viscous throughflow modelling of transonic compressors using a time-marching finite volume solver[C]//the 13th International Symposium on Air Breathing Engines. Reston: AIAA, 1997: 502-510.
[13] BARALON S, ERIKSSON L E, HÅLL U. Evaluation of higher-order terms in the throughflow approximation using 3D Navier-Stokes computations of a transonic compressor rotor: 99-GT-74[R]. New York: ASME, 1999.
[14] STURMAYR A, HIRSCH C. Throughflow model for design and analysis integrated in a three-dimensional Navier-Stokes solver[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1999, 213(4): 263-273.
[15] SIMON J F, LÉONARD O. A throughflow analysis tool based on the Navier-Stokes equations[C]//Proceedings of ETC 6th European Conference on Turbomachinery. Florence: European Turbomachinery Society, 2005: 7-11.
[16] SIMON J F, LÉONARD O. Modeling of 3-D losses and deviations in a throughflow analysis tool[J]. Journal of Thermal Science, 2007, 16(3): 208-214.
[17] SIMON J F, THOMAS J P, LÉONARD O. On the role of the deterministic and circumferential stresses in throughflow calculations[J]. Journal of Turbomachinery, 2009, 131(3): 031019.
[18] PERSICO G, REBAY S. A penalty formulation for the throughflow modeling of turbomachinery[J]. Computers & Fluids, 2012, 60(10): 86-98.
[19] TADDEI S R, LAROCCA F. Axisymmetric design of axial turbomachines: An inverse method introducing profile losses[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2008, 222(6): 613-621.
[20] TADDEI S R, LAROCCA F. CFD-based analysis of multistage throughflow surfaces with incidence[J]. Mechanics Research Communications, 2013, 47(47): 6-10.
[21] TADDEI S R, LAROCCA F. An actuator disk model of incidence and deviation for RANS-based throughflow analysis[J]. Journal of Turbomachinery, 2014, 136(2): 021001.
[22] PACCIANI R, RUBECHINI F, MARCONCINI M, et al. A CFD-based throughflow method with an explicit body force model and an adaptive formulation for the S2 streamsurface[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2016,230(1): 16-28.
[23] NIGMATULLIN R Z, IVANOV M J. The mathematical models of flow passage for gas turbine engines and their components: LS 198[R]. Neuillysurseine: AGARD, 1994.
[24] 袁宁, 张振家, 顾中华, 等. 涡喷发动机压气机三种S2流面计算程序的比较[J]. 推进技术, 1998, 19(1): 51-57. YUAN N, ZHANG Z J, GU Z H, et al. A comparison of three kinds of calculation program of S2 stream surface in the compressor of aero-engine[J]. Journal of Propulsion Technology, 1998, 19(1): 51-57 (in Chinese).
[25] 季路成, 孟庆国, 周盛. 叶轮机通流计算的时间推进方法[J]. 航空动力学报, 1999, 14(1): 23-26. JI L C, MENG Q G, ZHOU S. Time-marching method for through-flow computation of turbomachinery[J]. Journal of Aerospace Power, 1999, 14(1): 23-26 (in Chinese).
[26] 施发树, 刘兴洲. 多部件模型在全尺寸小型双函道涡扇发动机气流数值模拟中的应用[J]. 推进技术, 1998, 19(4): 22-26. SHI F S, LIU X Z. Multicomponent models in application to numerical simulation of a small full-sized by-pass turbofan engine[J]. Journal of Propulsion Technology, 1998, 19(4): 22-26 (in Chinese).
[27] 施发树. 一体化弹用小涡扇发动机系统的气动热力数值模拟[D]. 南京: 南京航空航天大学, 1999. SHI F S. Aero-thermodynamic numerical simulation of integrated small turbofan engine system[D]. Nanjing: Nanjing University of Aeronautics and Aerospace, 1999 (in Chinese).
[28] 于龙江, 陈美宁, 朴英. 航空发动机整机准三维流场仿真[J]. 航空动力学报, 2008, 23(6): 1008-1013. YU L J, CHEN M N, PIAO Y. Quasi-3D simulation of aero engine full flow field[J]. Journal of Aerospace Power, 2008, 23(6): 1008-1013 (in Chinese).
[29] 曹志鹏, 刘大响, 桂幸民, 等. 某小型涡喷发动机二维数值仿真[J]. 航空动力学报, 2009, 24(2): 439-444. CAO Z P, LIU D X, GUI X M, et al. Two dimensional numerical simulation of small turbojet engine[J]. Journal of Aerospace Power, 2009, 24(2): 439-444 (in Chinese).
[30] 金东海, 桂幸民. 某涡扇发动机考虑级间引气的二维数值模拟[J]. 航空动力学报, 2011, 26(6): 1346-1351. JIN D H, GUI X M. Two dimensional numerical simulation of a turbofan engine with air bleeding in compressor[J]. Journal of Aerospace Power, 2011, 26(6): 1346-1351 (in Chinese).
[31] 李德英, 宋彦萍, 陈浮, 等. 任意曲线坐标系Euler方程S2流面的计算方法[J]. 西安交通大学学报, 2015, 49(7): 42-48. LI D Y, SONG Y P, CHEN F, et al. Euler S2 stream surface calculation for arbitrary curvilinear coordinate system[J]. Journal of Xi’an Jiaotong University, 2015, 49(7): 42-48 (in Chinese).
[32] WAN K, JIN H, JIN D, et al. Influence of non-axisymmetric terms on circumferentially averaged method in fan/compressor[J]. Journal of Thermal Science, 2013, 22(1): 13-22.
[33] 万科, 朱芳, 金东海, 等. 周向平均方法在某风扇/增压级分析中的应用[J]. 航空学报, 2014, 35(1): 132-140. WAN K, ZHU F, JIN D H, et al. Application of circumferentially averaged method in fan/booster[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 132-140 (in Chinese).
[34] SIMON J F. Contribution to throughflow modelling for axial flow turbomachines[D]. Liege: University of Liege, 2007.
[35] MARBLE F. Three-dimensional flow in turbomachines[J]. High Speed Aerodynamics and Jet Propulsion, 1964, 10: 83-166.
[36] DENTON J D. Throughflow calculations for transonic axial flow turbines[J]. Journal of Engineering for Power, 1978, 100(2): 212-218.
[37] DANG T Q, WANG T. Design of multi-stage turbomachinery blading by the circulation method: actuator duct limit: 92-GT-286[R]. New York: ASME, 1992.
[38] BOSMAN C, MARSH H. An improved method for calculating the flow in turbo-machines, including a consistent loss model[J]. Journal of Mechanical Engineering Science, 1974, 16(1): 25-31.
[39] ADAMCZYK J J. Model equation for simulating flows in multistage turbomachinery[J]. Lecture Series-van Kareman Institute for Fluid Dynamics, 1996, 5: N1-N28.
[40] THOMAS J P, LÉONARD O. Investigating circumferential non-uniformities in throughflow calculations using a harmonic reconstruction: GT2008-50328[R]. New York: ASME, 2008.
[41] THOMAS J P, LÉONARD O. Towards a high order throughflow: Part Ⅰ-Investigating the effectiveness of a harmonic reconstruction for 3D flows: GT2010-22841[R]. New York: ASME, 2010.
[42] THOMAS J P, LÉONARD O. Toward a high order throughflow-Investigation of the nonlinear harmonic method coupled with an immersed boundary method for the modeling of the circumferential stresses[J]. Journal of Turbomachinery, 2012, 134(1): 011017. |