[1] 杨亚政, 杨嘉陵, 方岱宁. 高超声速飞行器热防护材料与结构的研究进展[J]. 应用数学和力学, 2008, 29(1):47-56. YANG Y Z, YANG J L, FANG D N. Research progress on the thermal protection materials and structures in hypersonic vehicles[J]. Applied Mathematics and Mechanics, 2008, 29(1):47-56(in Chinese).
[2] WITEOF Z D, NEERGAARD L J, VANDERWYST A S. Dynamic fluid-thermal-structural interaction effects in preliminary design of high speed vehicles[C]//15th Dynamics Specialists Conference. Reston, VA:AIAA, 2016.
[3] MCNAMARA J J, FRIEDMANN P P. Aeroelastic and aerothermoelastic analysis in hypersonic flow:Past, present, and future[J]. AIAA Journal, 2011, 49(6):1089-1122.
[4] WIETING A R, HOLDEN M S. Experimental shock-wave interference heating on a cylinder at Mach 6 and 8[J]. AIAA Journal, 1989, 27(11):1557-1565.
[5] 刘磊. 高超声速飞行器热气动弹性特性及相似准则研究[D]. 绵阳:中国空气动力研究与发展中心, 2014:121-122. LIU L. Study on the characteristics and similarity criteria of aerothermoelasticity for hypersonic vehicle[D]. Mianyang:China Aerodynamics Research and Development Center, 2014:121-122(in Chinese).
[6] DECHAUMPHAI P, THORNTON E A, WIETING A R. Flow-thermal-structural study of aerodynamically heated leading edges[J]. Journal of Spacecraft, 1989, 26(4):201-209.
[7] 耿湘人, 张涵信, 沈清, 等. 高速飞行器流场和固体结构温度场一体化计算新方法的初步研究[J]. 空气动力学学报, 2002, 20(4):422-427. GENG X R, ZHANG H X, SHEN Q, et al. Study on an integrated algorithm for the flowfields of high speed vehicles and the heat transfer in solid structures[J]. Acta Aerodynamica Sinica, 2002, 20(4):422-427(in Chinese).
[8] 夏刚, 刘新建, 程文科, 等. 钝体高超声速气动加热与结构热传递耦合的数值计算[J]. 国防科技大学学报, 2003, 25(1):35-39. XIA G, LIU X J, CHENG W K, et al. Numerical simulation of coupled aeroheating and solid heat penetration for hypersonic blunt body[J]. Journal of National University of Defense Technology, 2003, 25(1):35-39(in Chinese).
[9] GUELHAN A, ESSER B, KOCH U. Experimental investigation of gap flows on a flap model in the arc heated facility L3K:DLR-IB-39113-99C01[R]. Cologne:DLR, 1999.
[10] ESSER B, GULHAN A, SCHAFER R. Experimental investigation of thermal fluid/structure interaction in high enthalpy flow[C]//5th European Symposium on Aerothermodynamics for Space Vehicles. Cologne:DLR, 2004.
[11] HAUPT M C, NIESNER R, UNGER R, et al. Computational aero-structural coupling for hypersonic applications[C]//9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston, VA:AIAA, 2006.
[12] 桂业伟, 刘磊, 代光月, 等. 高超飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7):020844. GUI Y W, LIU L, DAI G Y, et al. Research status on hypersonic vehicle fluid-thermal-structural coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):020844(in Chinese).
[13] ROGER M. Aerothermoelasticity[J]. Aero/Space Engineering, 1958, 17(10):34-43.
[14] 《中国航空材料手册》编辑委员会. 中国航空材料手册第2卷变形高温合金铸造高温合金[M]. 北京:中国标准出版社, 2002:829-835. Editorial Committee of China Aeronautical Materials Handbook. China aeronautical materials handbook, Volume 2:Deformation superalloys & casting superalloys[M]. Beijing:China Standards Press, 2002:829-835(in Chinese).
[15] 霍格尔巴宾斯基, 约翰K哈维. 激波边界层干扰[M]. 北京:国防工业出版社, 2015:13-15. HOLGER B, JOHN K H. Shock wave-boundary-layer interactions[M]. Beijing:National Defense Industry Press, 2015:13-15(in Chinese).
[16] 刘磊, 桂业伟, 耿湘人, 等. 热气动弹性变形对飞行器结构温度场的影响研究[J]. 空气动力学学报, 2015, 33(1):31-36. LIU L, GUI Y W, GENG X R, et al. Study on the temperature field of hypersonic vehicle strucuture with aerothermoelasticity deformation[J]. Acta Aerodynamica Sinica, 2015, 33(1):31-36(in Chinese).
[17] 桂业伟, 刘磊, 杜雁霞. 热防护系统耦合分析方法与应用[J]. 现代防御技术, 2014, 42(4):9-14. GUI Y W, LIU L, DU Y X. Coupled analysis methods and applications of thermal protection system[J]. Modern Defence Technology, 2014, 42(4):9-14(in Chinese).
[18] LANEY C B. Computational gasdynamics[M].Cambridge:Cambridge University Press, 1998:233-235.
[19] SCOTT J N, NIU Y Y. Comparison of limiters in flux-split algorithms for euler equations[C]//31st Aerospace Sciences Meeting and Exhibit.Reston, VA:AIAA, 1993.
[20] YOON S, KWAK D, CHANG L. LU-SGS implicit algorithm for three-dimensional incompressible Navier-Stokes equations with source term[C]//9th AIAA Computational Fluid Dynamics Conference. Reston, VA:AIAA, 1989.
[21] 张昊元. 高超声速飞行器前缘缝隙流动气动热环境数值模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2012:7-8. ZHANG H Y. Numerical investigation for aerodynamic heating environment on leading-edge gap of hypersonic vehicle[D]. Mianyang:China Aerodynamics Research and Development Center, 2012:7-8(in Chinese).
[22] 陶文铨. 数值传热学[M]. 西安:西安交通大学出版社, 2001:14-17. TAO W Q. Numerical heat transfer[M]. Xi'an:Xi'an Jiaotong University Press, 2001:14-17(in Chinese).
[23] INCROPERA F P, DEWITT D P, DERGMAN T L, et al. Fundamentals of heat and mass transfer[M]. 6th ed. New York:John Wiley & Sons, Inc., 2007:43-48.
[24] 竹内洋一郎. 热应力[M]. 郭廷玮, 李安定, 译. 北京:科学出版社, 1977:358-365. Takeuchi H. Thermal stress[M]. GUO T W, LI A D, translated. Beijing:Science Press, 1977:358-365(in Chinese).
[25] ARNE C, STOKES T, TANG H, et al. Aerothermo-dynamic characteristics of slender ablating reentry vehicles[C]//5th Thermophysics Conference. Reston, VA:AIAA:1970.
[26] LANGTRY R. A correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart:Stuttgrart University, 2006:51-57.
[27] 龚浩瀚, 姜锦虎, 陈大庆. 网格数字图像相关方法测量位移场的研究[J]. 实验力学, 2000, 15(2):246-252. GONG H H, JIANG J H, CHEN D Q. Displacement measurement by grid digital image correlation[J]. Journal of Experimental Mechanics, 2000, 15(2):246-252(in Chinese). |