1 |
RAPINETT A. Zephyr: A high altitude long endurance unmanned air vehicle[D]. London: University of Surrey. 2009: 31-74
|
2 |
ROMEO G, FRULLA G, CESTINO E, et al. HELIPLAT: Design, aerodynamic, structural analysis of long- endurance solar-powered stratospheric platform[J]. Journal of Aircraft, 2004, 41(6): 1505-1520.
|
3 |
SHARMA V, KESHAVA K S. Aero-elastic Analysis Of High Aspect Ratio UAV wing—based on two-way fluid structure interaction[J]. Lecture Notes in Mechanical Engineering, 2021, 53: 37-58.
|
4 |
SALEEM M, GOPI E, RAMESH K R. Fabrication of solar energy UAV[J]. International Journal of Ambient Energy, 2018, 41(1): 74-79.
|
5 |
马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3): 623418.
|
|
MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623418 (in Chinese).
|
6 |
吴健发, 王宏伦, 黄宇. 大跨时空任务背景下的太阳能无人机任务规划技术研究进展[J]. 航空学报, 2020, 41(3): 623414.
|
|
WU J F, WANG H L, HUANG Y. Research development of solar powered UAV mission planning technology in large-scale time and space spans[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623414 (in Chinese).
|
7 |
张健, 张德虎. 高空长航时太阳能无人机总体设计要点分析[J]. 航空学报, 2016, 37(S1): 1-7.
|
|
ZHANG J, ZHANG D H. Essentials of configuration design of HALE solar-powered UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1): 1-7 (in Chinese).
|
8 |
甘文彪, 周洲, 许晓平. 仿生全翼式太阳能无人机分层协同设计及分析[J]. 航空学报, 2016, 37(1): 163-178.
|
|
GAN W B, ZHOU Z, XU X Q. Multilevel collaboration design and analysis of bionic full-wing typical solar-powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 163-178 (in Chinese).
|
9 |
高广林, 李占科, 宋笔锋, 等. 太阳能无人机关键技术分析[J]. 飞行力学, 2010(1): 1-4.
|
|
GAO G L, LI Z K, SONG B F, et al. Key technologies of solar powered unmanned air vehicle[J]. Flight Dynamics, 2010(1): 1-4 (in Chinese).
|
10 |
NOLL T E, BROWN J M, PEREZ-DAVIS M E, et al. Investigation of the Helios prototype aircraft mishap[R]. American NASA Headquarters, 2004.
|
11 |
KITAMURA T, YAMASHIRO K, OBATA A, et al. Development of a high stiffness extendible and retractable mast'HIMAT'for space applications[C]∥ 31st Structures, Structural Dynamics and Materials Conference. 1990: 572.
|
12 |
KITAMURA T, OKAZAKI K, NATORI M, et al. Development of a hingeless mast and its applications[J]. Acta Astronautica, 1988, 17(3): 341-346.
|
13 |
LI P, LIU C, TIAN Q, et al. Dynamics of a deployable mesh reflector of satellite antenna: form-finding and modal analysis[J]. Journal of Computational and Nonlinear Dynamics, 2016, 11(4): 041017.
|
14 |
李培, 马沁巍, 宋燕平, 等. 大型空间环形桁架天线反射器展开动力学模拟与实验研究[J]. 中国科学:物理学 力学 天文学, 2017, 47(10): 7-15.
|
|
LI P, MA Q W, SONG Y P, et al. Deployment dynamics simulation and ground test of a large space hoop truss antenna reflector[J]. Scientia Sinica: Physica, Mechanica et Astronomica, 2017, 47(10): 7-15 (in Chinese).
|
15 |
王明明, 罗建军, 袁建平, 等. 空间在轨装配技术综述[J]. 航空学报, 2021, 42(1): 523913.
|
|
WANG M M, LUO J J, YUAN J P, et al. In-orbit assembly technology: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 523913 (in Chinese).
|
16 |
VENKATESH V T, SARKAR S, MONDAL G. Buckling restrained sizing and shape optimization of truss structures[J]. Journal of Structural Engineering, 2020, 146(5): 04020048.
|
17 |
WELDEYESUS A G, GONDZIO J, HE L, et al. Adaptive solution of truss layout optimization problems with global stability constraints[J]. Structural and Multidisciplinary Optimization, 2019, 60(5): 2093-2111.
|
18 |
FAKHIMI R, SHAHABSAFA M, LEI W, et al. Discrete multi-load truss sizing optimization: model analysis and computational experiments[J]. Optimization and Engineering, 2021, 23(3): 1559-1585.
|
19 |
LU H, XIE Y M. Reducing the number of different members in truss layout optimization[J]. Structural and Multidisciplinary Optimization, 2023, 66(3): 1-16.
|
20 |
QIU J, FAN Y, WEI H, et al. Lightweight design of aircraft truss based on topology and size optimization[J]. Journal of Physics: Conference Series, 2021, 1986(1): 1-6.
|
21 |
WU Q, ZHOU Q, XIONG X, et al. Layout and sizing optimization of discrete truss based on continuum[J]. International Journal of Steel Structures, 2017, 17(1): 43-51.
|
22 |
LIEU Q X. A novel topology framework for simultaneous topology, size and shape optimization of trusses under static, free vibration and transient behavior[J]. Engineering with Computers, 2022, 38(6): 1-25.
|
23 |
WEI P, MA H, WANG M Y. The stiffness spreading method for layout optimization of truss structures[J]. Structural and Multidisciplinary Optimization, 2013, 49(4): 667-682.
|
24 |
ŠILIH S, KRAVANJA S, PREMROV M. Shape and discrete sizing optimization of timber trusses by considering of joint flexibility[J]. Advances in Engineering Software, 2010, 41(2): 286-294.
|
25 |
MELLAERT V R, LOMBAERT G, SCHEVENELS M. Global size optimization of statically determinate trusses considering displacement, member, and joint constraints[C]∥ IASS 2015 Amsterdam Symposium: Future Visions – Engineering. 2015:1-12.
|
26 |
MORTAZAVI A. Size and layout optimization of truss structures with dynamic constraints using the interactive fuzzy search algorithm[J]. Engineering Optimization, 2020, 53(3): 369-391.
|
27 |
ZINKOVA V A. Optimization of the structure of flat metal tube trusses[J]. Lecture Notes in Civil Engineering, 2020, 95: 213-218.
|
28 |
熊波. 全碳纤维复合材料桁架制备与可靠性分析方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
|
XIONG B. Research on fabrication and reliability analysis methods of all carbon fibre composite truss[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese).
|
29 |
WU J, SIGMUND O, GROEN J P. Topology optimization of multi-scale structures: a review[J]. Structural and Multidisciplinary Optimization, 2021, 63(3): 1455-1480.
|
30 |
WANG C, ZHU J, WU M, et al. Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components[J]. Chinese Journal of Aeronautics, 2021, 34(5): 386-398.
|
31 |
XIONG B, LUO X, TAN H. Multi-scale analysis of all-composite truss considering joint effects[J]. Engineering Mechanics, 2015, 32(8): 229-235.
|
32 |
JU S, JIANG D Z, SHENOI R A, et al. Flexural properties of lightweight FRP composite truss structures[J]. Journal of Composite Materials, 2011, 45(19): 1921-1930.
|
33 |
鞠苏. 复合材料桁架弯曲特性与非线性约束优化设计[D]. 长沙: 国防科学技术大学, 2011.
|
|
JU S. Flexural performance and design optimization with nonlinear constraints of a composite truss structure[D]. Changsha: National University of Defense Technology, 2011 (in Chinese).
|
34 |
鞠苏, 曾竟成, 江大志, 等. 复合材料桁架接头研究进展[J]. 材料导报, 2006, 20(12): 28-31.
|
|
JU S, ZENG J Z, JIANG D Z, et al. Study progress in composite truss-joint[J]. Materials Reports, 2006, 20(12): 28-31 (in Chinese).
|
35 |
UOZUMI T, KITO A. Carbon fibre-reinforced plastic truss structures for satellite using braiding/resin transfer moulding process[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2007, 221(2): 93-101.
|
36 |
钱钧, 肖军, 李勇. 构架式卫星接头自动铺丝的建模研究[J]. 纤维复合材料, 2002, 19(2): 3-5.
|
|
QIAN J, XIAO J, LI Y. Research on the modeling of the satellite triangle conjunction of frame in automated fibre placement[J]. Fiber Composites, 2002, 19(2): 3-5 (in Chinese).
|
37 |
杨红娜. 铺层-模压法碳/环氧桁架接头的成型工艺研究[J]. 航天返回与遥感, 2003, 24(4): 44-48.
|
|
YANG H N. Technic studies of carbon/epoxy truss-structute joints made by moulding-press technology[J]. Spacecraft Recovery & Remote Sensing | Spacecraft Recov Remot Sens, 2003, 24(4): 44-48 (in Chinese).
|
38 |
JAMISON L, SOMMER G S, PORCHE I I. High-altitude airships for the future force army[M]. Santa Monic: Rand, 2005: 8-14.
|
39 |
南波. 半硬式平流层飞艇骨架精细化分析与轻量化设计[D]. 哈尔滨: 哈尔滨工业大学, 2015.
|
|
NAN B. Refined analysis and light-wight design of semi-rigid stratospheric airship frame structuresr[D]. Harbin: Harbin Institute of Technology, 2015 (in Chinese).
|
40 |
李东旭, 刘望, 王杰, 等. 一种桁架式全挠性航天器结构平台: CN109573101A [P]. 2019-4-5.
|
|
LI D X, LIU W, WANG J, et al. The utility model relates to a truss type fully flexible spacecraft structural platform: CN109573101A [P]. 2019-4-5 (in Chinese).
|
41 |
郝树萌. 圆管相贯线焊接机器人结构设计及其控制系统研究[D]. 淄博: 山东理工大学, 2018.
|
|
HAO S M. Research on mechanism design and control system of circular pipe intersecting line welding robot[D]. Zibo: Shandong University of Technology, 2018 (in Chinese).
|
42 |
季忠,刘韧. 管管相交数学模型及其在数控加工中的应用[J]. 工程图学学报, 2002(2): 139-144.
|
|
JI Z, LIU R. Numerical model of intersected pipes and its application on NC machining[J]. Journal of Engineering Graphics, 2002(2): 139-144 (in Chinese).
|
43 |
聂海峰. 基于终生学习机制的贝叶斯优化算法研究[D]. 成都: 电子科技大学, 2023.
|
|
NIE H F. The Bayesian optimization algorithm based on lifelong learning mechanism[D]. Chengdu: University of Electronic Science and Technology of China (in Chinese).
|