[1] 姚起杭, 姚军. 工程结构的振动疲劳问题[J]. 应用力学学报, 2006, 23(1):12-15. YAO Q H, YAO J. Vibration fatigue in engineering structures[J]. Chinese Journal of Applied Mechanics, 2006, 23(1):12-15(in Chinese).[2] PAIRS P C, GOMEZ M P, ANDERSON M E. A rational analytical theory of fatigue[J]. Trends in Enginneering, 1961, 13:9-14.[3] 张浩宇, 何宇廷, 冯宇, 等. 先进复合材料薄壁加筋板轴压屈曲特性及后屈曲承载性能[J]. 航空材料学报, 2016, 36(4):55-63. ZHANG H Y, HE Y T, FENG Y, et al. Buckling and post-buckling performance of advanced composite stiffened panel under compression[J]. Journal of Aeronacutical Materials, 2016, 36(4):55-63(in Chinese).[4] 王燕, 李书, 许秋怡, 等. 复合材料加筋板剪切后屈曲分析与优化设计[J]. 航空学报, 2016, 37(5):1512-1525. WANG Y, LI S, XU Q Y, et al. Optimization design and analysis of stiffened composite panels in post-buckling under shear[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1512-1525(in Chinese).[5] KUMAR Y V S, PAIK J K. Buckling analysis of cracked plates using hierarchical trigonometric functions[J]. Thin-Walled Structures, 2004, 42(5):687-700.[6] LEI Z, BAI R, TAO W, et al. Optical measurement on dynamic buckling behavior of stiffened composite panels under in-plane shear[J]. Optics and Lasers in Engineering, 2016, 87:111-119.[7] MOUHAT O, ABDELLATIF K. Dynamic buckling of stiffened panels[J]. Procedia Engineering, 2015, 125:1001-1007.[8] 王博, 田阔, 郑岩冰, 等. 超大直径网格加筋筒壳快速屈曲分析方法[J]. 航空学报, 2017, 38(2):220379. WANG B, TIAN K, ZHENG Y B, et al. A rapid buckling analysis method for large-scale grid-stiffened cylindrical shells[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):220379(in Chinese).[9] PAIK J K, SATISH KUMAR Y V, LEE J M. Ultimate strength of cracked plate elements under axial compression or tension[J]. Thin-Walled Structures, 2005, 43(2):237-272.[10] CUI C, YANG P, LI C, et al. Ultimate strength characteristics of cracked stiffened plates subjected to uniaxial compression[J]. Thin-Walled Structures, 2017, 113:27-38.[11] SHI X H, ZHANG J, GUEDES SOARES C. Experimental study on collapse of cracked stiffened plate with initial imperfections under compression[J]. Thin-Walled Structures, 2017, 114:39-51.[12] 陈安, 魏玉龙, 廖江海, 等. 机身加筋壁板复合加载损伤容限性能试验[J]. 航空学报, 2017, 38(1):420093. CHEN A, WEI Y L, LIAO J H, et al. Damage tolerance test of stiffened fuselage panel under complex load[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):420093(in Chinese).[13] 刘双燕, 李玉龙, 邓琼, 等. 基于ESO法的九宫板阻尼结构的优化设计方法[J]. 振动与冲击, 2016, 35(22):197-203. LIU S Y, LI Y L, DENG Q, et al. Topological optimization design of 3×3 grid stiffened panel with additional damping layers based on evolutionary structural optimization[J]. Journal of Vibration and Shock, 2016, 35(22):197-203(in Chinese).[14] 中国航空研究院. 应力强度因子手册[M]. 北京:科学出版社, 1981:1-30. Chinese Aeronacutical Establishment. Stress intensity factor handbook[M]. Beijing:Science Press, 1981:1-30(in Chinese).[15] 程靳, 赵树山. 断裂力学[M]. 北京:科学出版社, 2014:57-82. CHENG J, ZHAO S S. Fracture mechanics[M]. Beijing:Science Press, 2014:57-82(in Chinese).[16] DOYLE J F, RIZZI S A. Frequency domain stress intensity calibration of damped cracked panels[J]. International Journal of Fracture, 1993, 61(2):123-130.[17] GALENNE E, ANDRIEUX S, RATIER L. A modal approach to linear fracture mechanics for dynamic loading at low frequency[J]. Journal of Sound and Vibration, 2007, 299(1-2):283-297.[18] ALBUQUERQUE C, CASTRO P, CALCADA R. Efficient crack analysis of dynamically loaded structures using a modal superposition of stress intensity factors[J]. Engineering Fracture Mechanics, 2012, 93:75-91.[19] TRAN V X, GENIAUT S, GALENNE E, et al. A modal analysis for computation of stress intensity factors under dynamic loading conditions at low frequency using eXtended finite element method[J]. Engineering Fracture Mechanics, 2013, 98:122-136.[20] 邱吉宝, 向树红, 张正平. 计算结构动力学[M]. 合肥:中国科学技术大学出版社, 2009:181-182. QIU J B, XIANG S H, ZHANG Z P. Computational structural dynamics[M]. Hefei:University of Science and Technology of China Press, 2009:181-182(in Chinese).[21] HAN Q, WANG Y, YIN Y, et al. Determination of stress intensity factor for mode I fatigue crack based on finite element analysis[J]. Engineering Fracture Mechanics, 2015, 138:118-126.[22] 姜伟, 杨平, 董琴. 平板穿透裂纹尖端动态应力强度因子研究[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(5):820-825. JIANG W, YANG P, DONG Q. Research on dynamic stress intensity factors for through-cracked plates[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering),2016, 40(5):820-825(in Chinese).[23] ZHU W X, SMITH D J. On the use of displacement extrapolation to obtain crack tip singular stresses and stress intensity factors[J]. Engineering Fracture Mechanics, 1995, 51(3):391-400.[24] GUINEA G V, PLANAS J, ELICES M. KI evaluation by the displacement extrapolation technique[J]. Engineering Fracture Mechanics, 2000, 66(3):243-255.[25] QIAN G, GONZÁLEZ-ALBUIXECH V F, NIFFENEGGER M, et al. Comparison of KI calculation methods[J]. Engineering Fracture Mechanics, 2016, 156:52-67.[26] 戴德沛. 阻尼减振降噪技术[M]. 西安:西安交通大学出版社, 1986:16. DAI D P. Damping technology in vibration and noise reduction[M]. Xi'an:Xi'an Jiaotong University Press, 1986:16(in Chinese). |