航空学报 > 2019, Vol. 40 Issue (11): 23139-023139   doi: 10.7527/S1000-6893.2019.23139

航空发动机压气机内部流体诱发声共振研究进展

洪志亮1, 赵国昌1, 杨明绥2, 孙晓峰3   

  1. 1. 中国民航大学 适航学院, 天津 300300;
    2. 中国航发沈阳发动机研究所, 沈阳 110015;
    3. 北京航空航天大学 能源与动力工程学院, 北京 100083
  • 收稿日期:2019-05-10 修回日期:2019-05-27 出版日期:2019-12-03 发布日期:2019-12-03
  • 通讯作者: 杨明绥 E-mail:yangmingsui@126.com
  • 基金资助:
    国家自然科学基金(51806146);中央高校基本科研业务费专项资金(3122018D019)

Development of flow-induced acoustic resonance in aeroengine compressors

HONG Zhiliang1, ZHAO Guochang1, YANG Mingsui2, SUN Xiaofeng3   

  1. 1. College of Airworthiness, Civil Aviation University of China, Tianjin 300300, China;
    2. AECC Shenyang Engine Research Institute, Shenyang 110015, China;
    3. School of Energy and Power Engineering, Beihang University, Beijing 100083, China
  • Received:2019-05-10 Revised:2019-05-27 Online:2019-12-03 Published:2019-12-03
  • Supported by:
    National Natural Science Foundation of China (51806146); the Fundamental Research Funds for the Central Universities (3122018D019)

摘要: 声共振是一种涡声相互作用诱发的特殊声学共振现象,可产生超过160 dB的纯音噪声,不仅严重影响环境舒适性,还可引起结构件的疲劳破坏,在火箭燃烧室、军机弹仓、汽车天窗以及热交换器管束等多个工程领域内引起了设计者们的足够重视。与此同时,越来越多的研究表明航空发动机压气机内部同样存在声共振问题,其引发的叶片断裂故障也屡见不鲜,已逐渐成为国际范围内的一项研究热点问题,但对其物理机制的认识仍待完善。本文系统性阐述了压气机内部声共振的机理、试验测试、预测方法和控制措施的研究现状及其发展趋势,旨在扩展对流体诱发叶片振动方面的基础理论认知,为提升压气机设计和排故能力提供技术储备。

关键词: 压气机, 叶片失效, 流体诱发振动, 声共振, 涡声相互作用

Abstract: Flow-induced acoustic resonance, a complex coupling phenomenon between the flow and sound fields, can cause high-intense tone noise over 160 dB, which can not only severely discomfort the cabins, but also lead to acoustic fatigue issues to the nearby structures. This problem has attracted the attention of more and more designers for a variety of engineering applications, such as rocket combustors, weapon bay for military applications, sunroof of cars, and tube bank of heat exchangers. Meanwhile, enough cases have suggested that acoustic resonance can also be detected in aeroengine compressors as a potential reason for the failure of aeroengine compressor blades, making it a growing research hotspot. However, the underlying mechanism of acoustic resonance is still an open issue. A comprehensive review on the present research in theoretical and experimental studies, predict and control methods of acoustic resonance is summarized to deepen the basic understanding of flow-induced blade failures, as well as to improve the design and troubleshooting abilities of aeroengine compressors.

Key words: compressor, blade failure, flow-induced vibration, acoustic resonance, vortex sound interaction

中图分类号: