[1] MERRICK J D, REEDER M F. Cavity-store interaction under supersonic free stream conditions:AIAA-2015-3017[R]. Reston, VA:AIAA, 2015.
[2] 吴继飞. 内埋武器舱系统气动特性研究[D]. 绵阳:中国空气动力研究与发展中心, 2012. WU J F. Investigation on aerodynamic characteristics of internal weapons bay system[D]. Mianyang:China Aerodynamics Research and Development Center, 2012(in Chinese).
[3] 宋文成, 李玉军, 冯强.武器舱气动噪声主动流动控制技术风洞试验研究[J]. 空气动力学学报, 2016, 34(1):33-39. SONG W C, LI Y J, FENG Q. Wind tunnel test research on weapon bay cavity active flow control for acoustic[J]. Acta Aerodynamica Sinica, 2016, 34(1):33-39(in Chinese).
[4] MORTON M. Certification of the F-22 advanced tactical fighter for high cycle and sonic fatigue:AIAA-2007-1766[R]. Reston, VA:AIAA, 2007.
[5] SARPOTDAR S, PANICKAR P, RAMAN G. Cavity tone suppression using a rod in cross flow investigation of shear layer stability mechanism:AIAA-2009-0700[R]. Reston, VA:AIAA, 2009.
[6] HANDA T, MIYACHI H, KAKUNO H, et al. Modeling of a feedback mechanism in supersonic deep-cavity flows[J]. AIAA Journal, 2015, 53(2):420-425.
[7] HANDA T, MIYACHI H, KAKUNO H, et al. Generation and propagation of pressure waves in supersonic deep-cavity flows[J]. Experiments in Fluids, 2012, 53(6):1855-1866.
[8] SCHMIT R F, SEMMELMAYER F, HAVERKAMP M, et al. Fourier analysis of high speed shadowgraph images around a Mach 1.5 cavity flow field:AIAA-2011-3961[R]. Reston, VA:AIAA, 2011.
[9] MOON S J, GAI S L, KLEINE H H, et al. Supersonic flow over straight shallow cavities including leading and trailing edge modifications:AIAA-2010-4687[R]. Reston, VA:AIAA, 2010.
[10] KÄHLER C J, ASTARITA T, VLACHOS P P, et al. Main results of the 4th international PIV challenge[J]. Experiments in Fluids, 2016, 57(6):97.
[11] 孟晟, 杨臧健, 王明晓, 等. 纹影定量化在火焰温度测量中的应用[J]. 实验流体力学, 2015, 29(4):65-69. MENG S, YANG Z J, WANG M X, et al. Application of quantitative schlieren method in flame temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4):65-69(in Chinese).
[12] BAUKNECHT A, MERZ C B, RAFFEL M. Blade-tip vortex detection in maneuvering flight using the background-oriented schlieren technique[J]. Journal of Aircraft, 2014, 51(6):2005-2014.
[13] BATHEL B F, BORG S E, JONES S, et al. Development of background-oriented schlieren for NASA Langley Research Center ground test facilities:AIAA-2015-1691[R]. Reston, VA:AIAA, 2015.
[14] MIZUKAKI T, BORG S, DANEHY P M, et al. Background-oriented schlieren for large-scale and high-speed aerodynamic phenomena:AIAA-2015-1692[R]. Reston, VA:AIAA, 2015.
[15] 张天天, 易仕和, 朱杨柱, 等. 基于背景纹影波前传感技术的气动光学波前重构与校正[J]. 物理学报, 2015, 64(8):084201. ZHANG T T, YI S H, ZHU Y Z, et al. Reconstruction and calibration on aero-optical wavefront aberration based on background oriented schlieren based wavefront sensing[J]. Acta Physica Sinica, 2015, 64(8):084201(in Chinese).
[16] AKATSUKA J, NAGAI S. Flow visualization by a simplified BOS technique:AIAA-2011-3653[R]. Reston, VA:AIAA, 2011.
[17] 吕小亮. 背景纹影技术的温度场测量[D]. 杭州:浙江大学, 2011:23-25. LÜ X L. Temperature measurement based on background oriented schlieren[D]. Hangzhou:Zhejiang University, 2011:23-25(in Chinese).
[18] 张征宇, 黄叙辉, 尹疆, 等. 风洞试验中的视频测量技术现状与应用综述[J]. 空气动力学学报, 2016, 34(1):70-79. ZHANG Z Y, HUANG X H, YIN J, et al. Research status and application of videogrammetric measurement techniques for wind tunnel testing[J]. Acta Aerodynamica Sinica, 2016, 34(1):70-79(in Chinese).
[19] 赵涛, 张征宇, 王水亮, 等. 大幅面气动光学波前畸变场测量与重构[J]. 光学学报, 2013, 33(10):1012003. ZHAO T, ZHANG Z Y, WANG S L, et al. Measurement and reconstruction for large aero-optics wavefront distortion field[J]. Acta Optica Sinica, 2013, 33(10):1012003(in Chinese).
[20] 张征宇, 黄叙辉, 尹疆, 等. 高速风洞试验中的视频测量技术进展[J].实验流体力学, 2015, 29(2):1-7. ZHANG Z Y, HUANG X H, YIN J, et al. Progress of videogrammetric measurement techniques for high speed wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(2):1-7(in Chinese).
[21] LIU T S, BURNER A W, JONES T W, et al. Photogrammetric techniques for aerospace applications[J]. Progress in Aerospace Sciences, 2012, 54(1):1-58.
[22] 黄桂平. 数字近景工业摄影测量关键技术研究与应用[D]. 天津:天津大学, 2005:54-59. HUANG G P. Study on the key technologies of digital close range industrial photogrammetry and applications[D]. Tianjin:Tianjin University, 2005:54-59(in Chinese).
[23] 罗川, 张征宇, 孙岩, 等. 模型变形视频测量的相机位置坐标与姿态角确定[J]. 实验流体力学, 2010, 24(6):88-91. LUO C, ZHANG Z Y, SUN Y, et al. Exterior orientation for videogrammetric model deformation measurement[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(6):88-91(in Chinese).
[24] 张征宇, 罗川, 孙岩, 等. 振动环境中相机位置坐标与姿态角解算的试验研究[J]. 实验流体力学, 2011, 25(3):56-59. ZHANG Z Y, LUO C, SUN Y, et al. Experimental investigation on exterior orientation in vibration environment[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3):56-59(in Chinese).
[25] NEALE W T, HESSEL D, TERPSTRA T. Photogrammetric measurement error associated with lens distortion:SAE Technical Paper 2011-01-0286[R]. Warrendale:SAE International, 2011.
[26] 张征宇, 黄诗捷, 罗川, 等. 基于共面条件的摄像机非线性畸变自校正[J]. 光学学报, 2012, 32(1):0115002. ZHANG Z Y, HUANG S J, LUO C, et al. Nonlinear distortion correction of camera based on coplanar condition equations[J]. Acta Optica Sinica, 2012, 32(1):0115002(in Chinese).
[27] 张征宇, 朱龙, 黄叙辉, 等. 基于前方交会的5点相对定向[J]. 光学学报, 2015, 35(1):0115001. ZHANG Z Y, ZHU L, HUANG X H, et al. Five-point relative orientation based on forward intersection[J]. Acta Optica Sinica, 2015, 35(1):0115001(in Chinese). |