[1] TAKEZAWA N. An improved method for establishing the process wise quality standard[R]. Tokyo: Union of Japanese Scientists and Engineers, 1980.
[2] LIU C, HU S J. An offset finite element model and its applications in predicting sheet metal assembly variation[J]. International Journal of Machine Tools & Manufacture, 1995, 35(11): 1545-1557.
[3] LIU S C, HU S J, WOO T C. Tolerance analysis for sheet metal assembly[J]. Transactions of the ASME, 1996, 118(1): 62-67.
[4] LIU C, HU S J. Variation simulation for deformable sheet metal assemblies using finite element methods[J]. Journal of Manufacturing Science & Engineering, 1997, 119(3): 368-374.
[5] CAI W, HU S J, YUAN J X. Deformable sheet metal fixturing: principles, algorithms, and simulations[J]. Journal of Manufacturing Science and Engineering, 1996, 118(3): 318-324.
[6] HU S J, KOREN Y. Stream of variation theory for automotive body assembly[J]. CIRP Annals-Manufacturing Technology, 1997, 46(1): 1-6.
[7] HSIEH C C, KONG P O. A framework for modeling variation in vehicle assembly processes[J]. International Journal of Vehicle Design, 1997, 18(5): 466-473.
[8] HSIEH C C, KONG P O. Simulation and optimization of assembly processes involving flexible parts[J]. Journal of Manufacturing Science & Engineering, 1997, 18(5): 455-465.
[9] EIMARAGHY H A. Geometric design tolerancing: Theories, standards and applications[M]. Berlin: Springer, 1998: 208-219.
[10] CAMELIO J, HU S J, CEGLAREK D. Modeling variation propagation of multi-station assembly systems with compliant parts[J]. Journal of Mechanical Design, 2003, 125(125): 673-681.
[11] CAMELIO J A, HU S J, CEGLAREK D. Impact of fixture design on sheet metal assembly variation[J]. Journal of Manufacturing Systems, 2002, 23(23): 182-193.
[12] 田兆青, 来新民, 林忠钦. 多工位薄板装配偏差流传递的状态空间模型[J]. 机械工程学报, 2007, 43(2): 202-209. TIAN Z Q, LAI X M, LIN Z Q. State space model of variations stream propagation in multi-station assembly process of sheet metal[J]. Journal of Mechanical Engineering, 2007, 43(2):202-209 (in Chinese).
[13] CUI A, ZHANG H P. Tolerance allocation and maintenance optimal design for fixture in multi-station panel assembly process[J]. Applied Mechanics & Materials, 2010, 34-35:1039-1045.
[14] 邢彦锋, 赵晓昱, 吴伟蔚. 基于夹具配置的薄板件装配偏差分析模型[J]. 计算机集成制造系统, 2010, 16(2): 280-286. XING Y F, ZHAO X Y, WU W W. Assembly variation analysis model based on fixture configurations for sheet metal parts[J]. Computer Integrated Manufacturing Systems, 2010,16(2): 280-286 (in Chinese).
[15] DAHLSTRÖM S, LINDKVIST L. Variation simulation of sheet metal assemblies using the method of influence coefficients with contact modeling[J]. Journal of Manufacturing Science and Engineering, 2007, 129(3): 615-622.
[16] 谭昌柏, 袁军, 周来水. 基于宽容分层序列法的飞机装配公差稳健设计技术[J]. 中国机械工程, 2012, 23(24): 2962-2967. TAN C B, YUAN J, ZHOU L S. Robust tolerancing for aircraft assembly based on tolerant lexicographic method[J]. China Mechanical Engineering, 2012, 23(24): 2962-2967 (in Chinese).
[17] 陈晖, 谭昌柏, 王志国. 耦合几何与材料误差的柔性装配偏差统计分析[J]. 航空学报, 2015, 36(9): 3176-3186. CHEN H, TAN C B, WANG Z G. Statistical variation analysis of compliant assembly coupling geometrical and material error[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 3176-3186 (in Chinese).
[18] 于奎刚, 金隼, 来新民. 基于Taguchi的柔性薄板装配夹具稳健设计[J]. 上海交通大学学报, 2009, 43(12): 1941-1945. YU K G, JIN S, LAI X M. A fixture locating robust design method of compliant sheet metal assembly based on Taguchi method[J]. Journal of Shanghai Jiaotong University, 2009, 43(12): 1941-1945 (in Chinese).
[19] CAI N, QIAO L. Rigid-compliant hybrid variation modeling of sheet metal assembly with 3D generic free surface[J]. Journal of Manufacturing Systems, 2016(41): 45-64.
[20] 孙辉鹏, 谭昌柏, 安鲁陵, 等. 基于并联装配模型的飞机壁板件装配偏差分析[J]. 航空制造技术, 2016(11): 88-102. SUN H P, TAN C B, AN L L, et al. Assembly variation analysis of aeronautical panels based on the model of assembly in parallel[J]. Aeronautical Manufacturing Technology, 2016(11): 88-102 (in Chinese). |