1 |
ZHOU B Y, DING L, CHEN B, et al. Physiological characteristics and operational performance of pilots in the high temperature and humidity fighter cockpit environments[J]. Sensors, 2021, 21(17): 5798.
|
2 |
SCHMINDER J, GÅRDHAGEN R. A generic simulation model for prediction of thermal conditions and human performance in cockpits[J]. Building and Environment, 2018, 143: 120-129.
|
3 |
FAN J L, ZHOU Q Y. A review about thermal comfort in aircraft[J]. Journal of Thermal Science, 2019, 28(2): 169-183.
|
4 |
FANGER P O. Thermal comfort[M]. New York: McGraw-Hill, 1972:1-15.
|
5 |
SHI X D, CHAO D, ZHANG Y, et al. The study of air supply ways effects on the aircraft cabin thermal environment[C]∥ WANG R, CHEN Z, ZHANG W, et al. Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019). Singapore: Springer, 2020: 123-131.
|
6 |
YAN Y H, LI X R, TAO Y, et al. Numerical investigation of pilots’ micro-environment in an airliner cockpit[J]. Building and Environment, 2022, 217: 109043.
|
7 |
Kuznetz LH. Analysis of the effects of free stream gas velocity upon astronaut thermal comfort: NASA TM-79823[R]. Washington, D.C.: NASA, 1978.
|
8 |
林国华, 袁修干, 杨燕生. 人机环境系统中CFD的研究[J]. 航空学报, 1999, 20(): 22-24.
|
|
LIN G H, YUAN X G, YANG Y S. CFD applications in the MMES industry[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(Sup 1): 22-24 (in Chinese).
|
9 |
沈海峰, 袁修干. 歼击机座舱空气流动和传热的数值模拟与实验[J]. 航空学报, 2009, 30(1): 30-39.
|
|
SHEN H F, YUAN X G. Numerical simulation and experiment on air flow and heat transfer in fighter plane cockpit[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(1): 30-39 (in Chinese).
|
10 |
XUE Y, ZHAI Z J, CHEN Q Y. Inverse prediction and optimization of flow control conditions for confined spaces using a CFD-based genetic algorithm[J]. Building and Environment, 2013, 64: 77-84.
|
11 |
PANG L P, LI P, BAI L Z, et al. Optimization of air distribution mode coupled interior design for civil aircraft cabin[J]. Building and Environment, 2018, 134: 131-145.
|
12 |
LIU W, DUAN R, CHEN C, et al. Inverse design of the thermal environment in an airliner cabin by use of the CFD-based adjoint method[J]. Energy and Buildings, 2015, 104: 147-155.
|
13 |
宁献文, 张利珍, 王浚. 旅客机座舱热舒适动态特性仿真[J]. 航空学报, 2006, 27(4): 551-555.
|
|
NING X W, ZHANG L Z, WANG J. Simulation of dynamic characteristics for airliner cabin thermal comfort[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 551-555 (in Chinese).
|
14 |
孙智, 孙建红, 赵明, 等. 基于改进PMV指标的飞机驾驶舱热舒适性分析[J]. 航空学报, 2015, 36(3): 819-826.
|
|
SUN Z, SUN J H, ZHAO M, et al. Analysis of thermal comfort in aircraft cockpit based on the modified PMV index[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 819-826 (in Chinese).
|
15 |
林家泉, 李弯弯. 基于PMV-PPD的地面空调最佳送风速度[J]. 航空学报, 2017, 38(8): 121089.
|
|
LIN J Q, LI W W. Best wind speed of ground air conditioning system based on PMV-PPD[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8): 121089 (in Chinese).
|
16 |
ZHANG H, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments: part I: Local sensation of individual body parts[J]. Building and Environment, 2010, 45(2): 380-388.
|
17 |
ZHANG H, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments, part II: local comfort of individual body parts[J]. Building and Environment, 2010, 45(2): 389-398.
|
18 |
ZHANG H, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments, part III: Whole-body sensation and comfort[J]. Building and Environment, 2010, 45(2): 399-410.
|
19 |
ZHOU X J, LAI D Y, CHEN Q Y. Thermal sensation model for driver in a passenger car with changing solar radiation[J]. Building and Environment, 2020, 183: 107219.
|
20 |
LI W J, CHEN J Q, LAN F C, et al. Numerical projection on occupant thermal comfort via dynamic responses to human thermoregulation[J]. International Journal of Automotive Technology, 2022, 23(1): 193-203.
|
21 |
VOELKER C, ALSAAD H. Simulating the human body’s microclimate using automatic coupling of CFD and an advanced thermoregulation model[J]. Indoor Air, 2018, 28(3): 415-425.
|
22 |
FIALA D, LOMAS K J, STOHRER M. Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions[J]. International Journal of Biometeorology, 2001, 45(3): 143-159.
|
23 |
寿荣中, 何慧姗. 飞行器环境控制[M]. 北京: 北京航空航天大学出版社, 2004: 62-84.
|
|
SHOU R Z, HE H S. Spacecraft optimal control theory and method[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2004: 62-84 (in Chinese).
|
24 |
PENNES H H. Analysis of tissue and arterial blood temperatures in the resting human forearm. 1948[J]. Journal of Applied Physiology, 1998, 85(1): 5-34.
|
25 |
马越崎. 某型飞机空调性能优化分析及改进[J]. 流体测量与控制, 2022, 3(2): 41-45.
|
|
MA Y Q. Improve and research on the air conditioner of certain aircraft[J]. Fluid Measurement & Control, 2022, 3(2): 41-45 (in Chinese).
|